Смекни!
smekni.com

Прогнозирование, предупреждение и ликвидация чрезвычайных ситуаций на Туймазинском газоперерабатывающем заводе (стр. 14 из 35)

qвохл = π ·(Ігв·Dгр + 0,5 ·Ісмв·Dсмр ·n), (3.40)

где Ігв- расход воды на 1м длины окружности горящего резервуара, принимаемый равным 0,5 л/(м2·с);

Ісмв- расход воды на 1м длины окружности смежного резервуара, принимаемый равным 0,2 л/(м2·с);

Dгр ,Dсмр- диаметры горящего и смежных резервуаров, м;

n- число смежных резервуаров;

Тогда получим:


qвохл=3,14· (0,5·2+0,5·0,2·2·2)=5,18 л/с.

Следовательно, расход воды для охлаждения горящего и соседних с ним резервуаров составит – 5,18 л/с.

3.5.2.5 Расчет количества пенообразующих устройств

В качестве пенообразующих устройств, для пенной системы пожаротушения применяют пеногенераторы.

Число потребных для защиты резервуара пеногенераторов nг определяется по формуле:

nг=0,785D2p·Ip/qгp, (3.41)

где Dp- диаметр резервура, м;

Ip- удельный расход раствора, л/(м2·с), для сжиженного пропана - 0,08 л/(м2∙с);

qгp- производительность генератора пены по раствору, л/с, принимается равным для пеногенератора ГВП 2 л/с [3]. Тогда получим:

nг= 0,785·22·0,08/2=1

Следовательно, количество пенообразующих устройств (пеногенераторов) на один резервуар составит 1 штуку.


1 - резервуар; 5 - пенная камера с ГВП; 3 - кольцо водяного орошения; 4 - трубопровод. для подачи пенообразующего раствора в ГВП; 5 - трубопровод для подачи воды в кольцевой ороситель; 6 - задвижка; 7 - коллектор раствора; 8 - водяной коллектор; 9 - магистральный трубопровод для подачи раствора; 10 -магистральный трубопровод для подачи воды; 11 - сопло Вентури; 12, 13 -насосы; 14 - всасывающая линия насоса; 15 - водопровод; 16 - циркуляционные трубы смесители; 17 - смеситель; 18- трубки для управления дозатором; 19 - труба для подачи пенообразователя к смесителю; 20 - автоматический дозатор; 21 - труба для подачи пенообразователя к автоматическому дозатору; 22 - бак с пенообразователем.

Рисунок 3.3 - Принципиальная схема комбинированной системы установки для тушения пожаров в резервуарах с нефтепродуктами многократной воздушно-механической пеной и орошением резервуара водой

3.5.3 Системы автоматической пожарной сигнализации

Автоматическая пожарная сигнализация является важной мерой предотвращения крупных пожаров. При отсутствии пожарной сигнализации от момента обнаружения пожара до вызова пожарных подразделений проходит большой промежуток времени, что в большинстве случаев приводит к полному охвату помещения пламенем. Основная задача автоматической пожарной сигнализации - обнаружение начальной стадии пожара, передача извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления.

Функционально автоматическая пожарная сигнализация состоит из приемно-контрольной станции, которая через сигнальные линии соединена с пожарными извещателями. Задачей сигнальных извещателей является преобразование различных проявлений пожара в электрические сигналы. Приемно-контрольная станция после получения сигнала от первичного извещателя включает световую и звуковую сигнализацию и при необходимости автоматические установки пожаротушения и дымоудаления.

Скорость срабатывания автоматической пожарной сигнализации в основном определяется скоростью срабатывания первичных извещателей. В настоящее время наиболее часто используют тепловые, дымовые, световые и звуковые пожарные извещатели.

Тепловые извещатели по принципу действия разделяются на максимальные, дифференциальные и максимально-дифференциальные. Первые срабатывают при достижении определенной температуры, вторые - при определенной скорости нарастания температуры, а третьи - от любого значительного изменения температуры. В качестве чувствительных элементов применяют легкоплавкие замки, биметаллические пластины, трубки, заполненные легко расширяющейся жидкостью, термопары и т. д. Тепловые пожарные извещатели устанавливают под потолком в таком положении, чтобы тепловой поток, обтекая чувствительный элемент извещателя, нагревал его. Тепловые пожарные извещатели не обладают высокой чувствительностью, поэтому обычно не дают ложных сигналов срабатывания в случае увеличения температуры в помещении при включении отопления, выполнения технологических операций.

Дымовые пожарные извещатели обладают меньшей инерционностью. Пожарная защита современных промышленных предприятий включает комплекс профилактических, организационных и технических мероприятий, дополняющих друг друга и тесно взаимосвязанные между собой.

Технические средства борьбы с пожарами подразделяются на оповестительные и исполнительные. К оповестительным относятся различного рода сигнальные устройства (пожарные извещатели).

Исполнительные средства подразделяются на мобильные, переносные и стационарные.

Стационарные средства тушения в свою очередь подразделяются на автоматические, полуавтоматические и неавтоматические.

К автоматическим стационарным средствам тушения относятся такие, в которых процессы обнаружения и тушения пожара полностью автоматизированы. Полуавтоматические стационарные средства тушения включаются оператором.

Потребность в средствах автоматической пожарной зашиты (АПЗ) обусловливается тем, что современные промышленные предприятия становятся все более комплексно механизированными и автоматизированными. Отсутствие в них автоматических средств пожарной защиты снижает уровень механизации и автоматизации. Для современных производств характерна тенденция максимальной интенсификации производства при минимуме обслуживающего персонала, что в ряде случаев связано с повышением пожарной опасности. Уменьшить эту опасность можно только за счет автоматизации пожаротушения [23].

3.6 Оценка возможного числа пострадавших

Сценарий аварии, разработанный в разделе 2 дипломного проекта, предполагает возникновение взрыва и пожара пролива на газофракционирующей установке. Основными поражающими факторами при данном сценарии аварии будут тепловое излучение пожара пролива и избыточное давление ударной волны при взрыве. Основная часть людей во время возникновения ЧС находится внутри зданий и сооружений, т.е. воздействие теплового излучения многократно ослабляется, основным поражающим фактором при определении числа пострадавших будем считать избыточное давление во фронте ударной волны.

Найдем возможное число пострадавших от взрыва пропана на газофракционирующей установке, используя результаты расчетов п.3.3.1, рисунок 1 Приложения Б (план расположения площадок объекта), и таблицу 5 Приложения А.

Определим количество пострадавших людей в зданиях, получивших различную степень разрушения (таблица 3.9):

- в полностью разрушенных зданиях выходит из строя 100 % находящихся в них людей, при этом полагают, что все пострадавшие находятся в завалах;

- в сильно разрушенных зданиях выходит из строя до 60 % находящихся в них людей, при этом считают, что 50 % из числа вышедших из строя может оказаться в завале, остальные поражаются обломками, стеклами и давлением в волне;

- в зданиях, получивших средние разрушения, может выйти из строя до 10 - 15 % находящихся в них людей.

Таблица 3.9 – Количество пострадавших людей в зданиях, получивших различную степень разрушения

Здание Тип здания Расстояние от центра взрыва, м Величина избыточного давления, кПа Степень разрушения здания Количество людей, находящихся в зданиях Количество людей, вышедших из строя
Техноло-гическая насосная 1 блока Кирпич-ное одно-этажное 26 130 полная 3 3
Компрес-сорная станция Кирпич-ное двух-этажное 50 50 сильная 9 6
Здание мате-риального склада №1 Железо-бетонное крупно-панельное одно-этажное 70 30 средняя 3 2
Здание заводоуп-равления Кирпич-ное трех-этажное 75 30 сильная 32 19
Итого 47 30

Остальные здания получат слабую степень разрушения. Согласно расчетам в п.3.3.1, радиус разрушений зданий слабой степени составит 250 м, в этой зоне находятся 87 человек.

Таким образом, общее количество пострадавших составит 87 человек, 30 из них погибнут, остальные 57 человек, получат травмы различной степени тяжести.

Результаты проведенных расчетов:

1. Газофракционирующая установка относится к категории АН, величина индивидуального риска при возможном сгорании сжиженного пропана с образованием волн давления превышает 10-6 в год на расстоянии 30 м от наружной установки, горизонтальный размер зоны, ограничивающей газопаровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени (НКПР), превышает 30 м и расчетное избыточное давление при сгорании газовоздушной смеси на расстоянии 30 м от наружной установки превышает 5 кПа.

2. Социальный риск не превышает нормативное значение 10-7, пожарная безопасность выполнена, но требуется принятие всех возможных мер по снижению риска возникновения взрыва.

3. В соответствии с таблицей 3.3.1 и рисунком 1 Приложения Б полному разрушению подверглось здание технасосной блока №1, сильным разрушениям подверглись здания заводоуправления и компрессорной станции.

4. Общее количество пострадавших составит 87 человек, 30 из них погибнут, остальные 57 человек, получат травмы различной степени тяжести, основным поражающим фактором будет избыточное давление ударной волны.

4 ПЛАНИРОВАНИЕ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ АВАРИЙНО-СПАСАТЕЛЬНЫХ И ДРУГИХ НЕОТЛОЖНЫХ РАБОТ ПРИ ЛИКВИДАЦИИ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ НА ТУЙМАЗИНСКОМ ГАЗОПЕРЕРАБАТЫВАЮЩЕМ ЗАВОДЕ