Смекни!
smekni.com

Прогнозирование, предупреждение и ликвидация чрезвычайных ситуаций на Туймазинском газоперерабатывающем заводе (стр. 8 из 35)

Прогнозирование частоты аварий проводится на основе статистический данных. В разделе 1 приведена статистика ЧС на предприятиях нефтепереработки и причин их возникновения. Аварийные ситуации, связанные со взрывами и пожарами на газоперерабатывающих заводах, как правило, влекут за собой значительные потери среди людей, разрушения технологического оборудования, а также значительный материальный ущерб. Крупные аварии обычно характеризуются комбинацией случайных событий, которые возникают с различной частотой и на разных стадиях развития аварии. Для выявления причинно-следственных связей между ними используется метод логико-графического анализа «дерево событий».

Следует отметить, следующие общие специфические особенности СУГ [10]:

· При температуре окружающей среды содержимое резервуара, представляет собой двухфазную среду (жидкость-пар) с давлением, превышающим атмосферное (иногда в 7-8 раз);

· Разгерметизация резервуара в любой её точке приводит к истечению жидкой или парообразной среды с образованием в окружающем пространстве взрывоопасного паровоздушного облака;

· При истечении жидкой фазы определенная часть её (в некоторых случаях до 40 %) мгновенно испаряется, остальная часть жидкости образует зеркало пролива, из которого происходит интенсивное испарение продукта;

· СУГ являются горючими веществами, минимальные энергии зажигания смесей паров которых с воздухом низки;

· Сгорание взрывоопасных паровоздушных облаков приводит к образованию ударных волн с тем или иным разрушением окружающих объектов.

Сжиженный пропан относится к жидкостям, у которых критическая температура выше, а точка кипения ниже окружающей среды. Основное отличие жидкостей данной категории заключается в явлении «мгновенного испарения», которое возникает тогда, когда в системе, включающей жидкость, находящуюся в равновесии со своими парами, понижается давление. Через некоторое время устанавливается новое состояние равновесия, причем температура кипения жидкости будет ниже. Доля мгновенно испарившейся жидкости зависит от температуры окружающей среды. Мгновенное испарение протекает интенсивно. Как только внешняя поверхность массы жидкости освобождается от своего пара, и внешний слой распадается, происходит освобождение нижнего слоя. При этом образующийся при расширении пара импульс приводит к выносу пара в окружающую атмосферу, где он смешивается с воздухом, образуя облако паровоздушной смеси. Размер парового облака, образующегося при полном разрушении резервуара со сжиженным газом, будет зависеть от степени заполнения сосуда жидкостью в момент разрыва. Чем меньше степень заполнения резервуара, тем меньше возрастает первоначальный объем пара.

При пробое резервуара выше уровня жидкости, выброс пара при давлении в резервуаре будет продолжаться до тех пор, пока вся жидкость не испарится. Хотя при этом от окружающей среды подводится тепло, содержимое будет охлаждаться до температуры, зависящей от размера отверстий.

При пробое резервуара ниже уровня жидкости в отверстии плоской стенки, скорее всего можно ожидать появление однофазного потока жидкости. При этом мгновенное испарение будет происходить с внешней стороны места утечки.

Образование парового облака может привести к трем типам опасностей: крупному пожару, взрыву парового облака, токсическому воздействию [10].

Учитывая характер поведения сжиженного пропана, построено блок-схема развития различных аварийных ситуаций на газофракционирующей установке ТГПЗ (рисунок 2.1), на основании блок-схемы, построено дерево событий (рисунок 2.2).

Рисунок 2.1 – Блок-схема развития аварийных ситуаций на газофракционирующей установке

Рисунок 2.2 – Дерево событий возникновения аварий на газофракционирующей установке

Вероятность возникновения инициирующего события – разрушение емкости с выбросом пропановой фракции, принята равной 1.

Значение частоты возникновения отдельного события или сценария пересчитывается путем умножения частоты возникновения инициирующего события на условную вероятность развития аварии по конкретному сценарию.

1 - разрушение резервуара с выбросом пропана;

2 – длительное истечение продукта;

3 – мгновенная разгерметизация;

4 – образование парогазовоздушного облака;

5 – факельное горение;

6 – нет источника воспламенения;

7 – есть источник воспламенения;

8 – рассеяние облака;

9 –взрыв газовоздушной смеси;

10 – рассеяние облака;

11 – взрыв газовоздушной смеси;

12 – огненный шар;

13 – пожар пролива;

Значение частоты возникновения сценария аварийной ситуации при разрушении резервуара содержащего пропановую фракцию, с образованием огненного шара равно:

Ро.ш. = Р1· Р13 · Р37 · Р712 = 1·0,2·0,1·0,03= 6·10-4

Вероятность возникновения факельного горения:

Рфак = Р1·Р12·Р25 = 1·0,8·0,4= 0,32

Вероятность возникновения пожара пролива:

Рп.п. = Р1·Р13·Р37·Р713 =1·0,2·0,1·0,03= 6·10-4


Вероятность возникновения взрыва:

Рвзрыв = Р911= Р1·Р12·Р24·Р49+ Р1·Р13·Р37·Р711 =1·0,8·0,4·0,2+

+1·0,2·0,1·0,03= 6,4·10-2+6·10-4=6,46·10-2

Таким образом, наиболее вероятным сценарием развития аварии является факельное горение при длительном истечении продукта, но, учитывая статистику ЧС, связанных с разрушением резервуаров, наибольшие разрушающие последствия имеют залповые выбросы больших объемов продукта (мгновенная разгерметизация) с последующим взрывом, поэтому будет рассматриваться именно этот сценарий.

2.4 Разработка сценариев развития чрезвычайной ситуации методом построения дерева отказов

Учитывая все свойства обращающихся веществ и особенности технологического режима, рассматривая причины возникновения аварийных ситуаций, было составлено дерево отказов развития аварийных ситуаций, которое представлено на рисунке 2.3:

Прекращение подачи электроэнергии приведет к резкому увеличению температуры теплоносителя в змеевиках печи, переполнению емкостей орошения и подъему давления в колоннах и емкостях.

Прекращение подачи воздуха КИП и А приводит к отказу в работе регуляторов уровней, давлений и температуры, отказ в работе КИП и А приведет к переполнению колонн и емкостей, повышению давления и температуры в аппаратах.

Прекращение подачи воды оборотного водоснабжения приведет к повышению давления в колоннах и емкостях вследствие прекращения конденсации паров продуктов в конденсаторах-холодильниках.

Выход из строя насосов приведет к переполнению емкостей орошения и подъему давления в аппаратах [2].

Аварийные ситуации на рассматриваемом объекте возникают вследствие разрушения (полного или частичного) колонн, емкостного оборудования, трубопроводов, поэтому именно эти варианты аварий и выбираются в качестве типовых сценариев.

Рисунок 2.3 – «Дерево отказов» развития аварии на газофракционирующей установке

2.5 Краткое описание рассматриваемой чрезвычайной ситуации

Анализ имеющихся данных, природно-климатических сведений о районе расположения завода показал, что наиболее опасным вариантом развития аварии будет полная разгерметизация емкости орошения с пропаном объемом 16 м3 на открытой площадке.

Сжиженный пропан в емкости орошения находится под давлением 1,6 МПа, при температуре 50ºС. Причиной разгерметизации емкости орошения послужили нарушение технологического процесса (прекращение подачи воды оборотного водоснабжения привело к прекращению конденсации паров продуктов в конденсаторах-холодильниках, это привело к повышению давления в емкости орошения), нарушение герметичности аппарата (коррозия сварного шва) и отказ предохранительного клапана.

Произошел залповый выброс сжиженного пропана, часть пропана мгновенно испарилась, образовав облако паровоздушной смеси, жидкая фаза вылилась на подстилающую поверхность, образовав зеркало пролива.

Источником воспламенения послужила искра, созданная падающими конструкциями разрушенной емкости. При воздействии источника воспламенения произошел взрыв облака паровоздушной смеси и пожар пролива.

Авария произошла летом, месяц - июль, в 15.30, смена находится на рабочих местах и воздействию опасных факторов подвержено максимальное количество людей, скорость ветра – 1 м/с. Вследствие воздействия поражающих факторов взрыва, здания на различном расстоянии от центра взрыва будут подвержены полным, сильным, средним и слабым разрушениям. Люди, находящиеся на открытых площадках, в зданиях и сооружениях получат смертельные и травмирующие поражения. Расчет воздействия поражающих факторов ЧС проводится в разделе 3 дипломного проекта «Пожаровзрывозащита».


3 ПОЖАРОВЗРЫВОЗАЩИТА ГАЗОФРАКЦИОНИРУЮЩЕЙ УСТАНОВКИ ТУЙМАЗИНСКОГО ГАЗОПЕРЕРАБАТЫВАЮЩЕГО ЗАВОДА

В данном разделе рассчитываются показатели пожаровзрывоопасности объекта, определяется категория газофракционирующей установки по пожаровзрывоопасности, приводятся основные огнетушащие средства, используемые при тушении сжиженных углеводородных газов, рассчитывается молниезащита установки, оцениваются социальный и индивидуальный риски, разрабатываются мероприятия по предупреждению пожаров и взрывов.

3.1 Анализ производства по пожаровзрывоопасности. Характеристика используемых в производстве веществ и материалов по пожаровзрывоопасности