Смекни!
smekni.com

Производственная безопасность (стр. 8 из 23)

Динамическая неуравновешенность возникает при пересечении суммарной оси инерции с осью вращения не в центре масс детали, т.е. ось инерции и ось вращения не параллельны друг другу.

Частота вибрации, вызванной неуравновешенностью масс вращающихся деталей, равна частоте их вращения.

Снижение уровней вибрации и сопровождающего её шума при этом достигается балансировкой вращающихся деталей.

Причиной вибрации (и соответственно шума) может быть также нарушение соосности валов оборудования и привода (например, электродвигателя). Снижение уровней вибрации и шума в этом случае достигается соответствующей центровкой валов.

8.6.4 Снижение шума газодинамических процессов

Основными причинами генерирования шума в газовых потоках являются вихревые процессы (турбулентность), колебания среды под действием рабочих органов оборудования, пульсация давления, а также колебания, вызванные неоднородностью газового пространства по его плотности. Снижение уровня звукового давления непосредственно в производственном оборудовани достигается увеличением зазора между деталями, находящимися в газовой струе, и улучшением газодинамических характеристик проточной части оборудования.

Значительное снижение шума достигается установкой специальных глушителей на всасывающих и выхлопных линиях компрессоров, вентиляторов и др. Глушители представляют собой цилиндрическое устройство с наполнением из стеклянного или базальтового волокна со средней объёмной плотностью ~ 20 кг/м3. Снижение уровня звукового давления при этом достигает 70 дБ на средних частотах (~ 2000 Гц) и 15…30 дБ на низких и высоких частотах. Принцип действия глушителя шума основан на явлении звукопоглощения.

8.6.5 Снижение вибрации производственного оборудования путём вибропоглощения и виброизоляции

Вибропоглощение. Принцип вибропоглощения заключается в уменьшении амплитуды колебаний аппарата (машины) или отдельных его частей за счёт облицовки вибрирующих поверхностей жёсткими и мягкими демпфирующими покрытиями. При этом энергия колебательного процесса переходит во внутреннюю энергию облицовки в результате трения между её отдельными частицами (доменами), которые имеют различную собственную частоту колебаний.

В качестве жёстких покрытий используются пластмассы с динамическим модулем упругости 100…1000 МПа, которые наиболее эффективны на низких и средних частотах (1… 1000 Гц).

Мягкие покрытия (резина, мягкие пластмассы, мастики и т. п. материалы) с динамическим модулем упругости ~10 МПа более эффективны на высоких частотах (> 1000 Гц).

Толщина вибропоглощающего слоя в обоих случаях составляет 2…3 толщины стенки защищаемого оборудования.

Виброизоляция. Принцип виброизоляции заключается в создании упругой связи между источником колебаний (машины и аппараты) и поддерживающей его конструкцией (опора, основание и др.) путём размещения между ними амортизаторов. В качестве амортизаторов используются стальные пружины или упругие прокладки из резины и других подобных материалов.

Эффективность виброизоляции характеризуется коэффициентом передачи действующей силы виброколебаний на основание (опору), определяемым по формуле

К = [(f/foz)2 – 1]–1 (13)

где: f – частота колебаний системы (аппарат–опорная плита–виброизолятор) под действием возмущающей силы, Гц;

foz – собственная частота колебаний системы, Гц.

Из данного выражения следует:

1. При f < foz система имеет такое упругое сопротивление, что сила виброколебаний полностью передаётся основанию;

2. При f = foz возникает явление резонанса, при этом амплитуда колебаний резко возрастает;

3. При

система оказывает инерционное сопротивление, и эффективность виброизоляторов возрастает с увеличением частоты колебаний.

Таким образом условием надёжной работы виброизоляторов является обеспечение соотношения

(14)

9. Безопасность эксплуатации систем, работающих под давлением

9.1 Сосуды, работающие под давлением

Под сосудом понимается геометрически замкнутая ёмкость, предназначенная для ведения химических, тепловых и других технологических процессов, а также для хранения и транспортировки газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцера для подключения различных коммуникаций и устройств.

В зависимости от условий эксплуатации сосуды могут быть передвижными (для временного использования в различных местах или во время их перемещения) и стационарными (постоянно установленные в одном определённом месте).

Рабочее давление в сосуде может быть как избыточное (по отношению к атмосферному) внутреннее, так и избыточное наружное, возникающее при нормальном протекании рабочего процесса.

Чаще всего используются сосуды следующих видов:

баллон – сосуд, имеющий одну или две горловины для установки вентилей, фланцев или штуцеров, предназначенный для транспортировки, хранения и использования сжатых, сжиженных или растворённых под давлением газов;

бочка – сосуд цилиндрической или другой формы, который можно перекатывать с одного места на другое и ставить на торцы без дополнительных опор, предназначенный для транспортировки и хранения веществ, указанных выше;

цистерна – передвижной сосуд, постоянно установленный на раме ж/д вагона, на шасси автомобиля (прицепа) или других средствах передвижения, предназначенный для транспортировки и хранения веществ, указанных выше;

резервуар – стационарный сосуд, предназначенный для хранения веществ, указанных выше;

Конструкция сосуда должна обеспечить надёжность и безопасность эксплуатации в течение расчётного срока службы и предусматривать возможность проведения технического освидетельствования, очистки, промывки, полного опорожнения, продувки газом или паром, ремонта, эксплуатационного контроля состояния металла и соединений. Сосуд должен иметь необходимое количество люков и смотровых лючков для осмотра, очистки, ремонта, монтажа и демонтажа разборных внутренних устройств.

Сосуд должен быть изготовлен цельнокованным или сварным способом. Отверстия в стенках сосуда должно быть вне сварных соединений.

Материалы, применяемые для изготовления сосудов должны обеспечивать их надёжную работу в течение расчётного срока службы с учётом заданных условий эксплуатации (по величине давления, температуры, составу и др.).

В качестве материала для сосудов, работающих под давлением, используется сталь (углеродистая и легированная), цветные металлы и их сплавы. Неметаллические материалы могут применяться только с разрешения органов «Федеральной службы по технологическому, экологическому и атомному надзору РФ» (Ростехнадзор, РТН) на основании заключения специализированной организации.

Все сварные соединения сосудов, работающих под давлением, должны быть подвержены неразрушающему контролю на наличие в них дефектов.

9.1.1 Опасности, возникающие при эксплуатации сосудов, работающих под давлением

Основная опасность при эксплуатации сосудов заключается в возможности их разрушения при внезапном адиабатическом расширении газов и паров (физический взрыв). При физическом взрыве потенциальная энергия сжатой среды в течение малого промежутка времени реализуется в кинетическую энергию осколков разрушенного сосуда и ударную волну.

Особенно опасны взрывы сосудов, содержащих горючие вещества, так как при этом возникает химический взрыв, являющийся причиной пожара.

При взрывах сосудов развиваются большие мощности, что и является причиной сильных разрушений. Так, например, при разрыве сосуда V = 1

со сжатым до Р = 1,2 МПа воздухом с длительностью физического взрыва 0,1 с развивается мощность, равная 28 МВт.

Наиболее частыми причинами аварий сосудов, работающих под давлением, являются:

– несоответствие конструкции максимально допустимым давлению и температуре;

– превышение давления сверх предельного для данного сосуда;

– потеря механической прочности в результате внутренних дефектов, коррозии, местных перегревов и др.;

– несоблюдение установленного режима работы;

– низкая квалификация обслуживающего персонала;

– отсутствие технического надзора.

Так как наиболее часто на производствах топливно-энергетического комплекса используются баллоны для транспортирования, хранения и использования сжатых, сжиженных и растворённых газов, рассмотрим подробнее опасности, возникающие при их эксплуатации.

Взрывы баллонов возможны при повреждении корпуса в случае падения или удара по баллону, особенно при температуре < –30 оС, т. к. при этом повышается хрупкость стали. Взрыв может произойти и при повышении температуры из-за роста давления среды в баллоне.

Причиной взрыва может быть также переполнение баллона сжиженными газами из-за резкого повышения давления при росте температуры, что объясняется следующим образом. При повышении температуры баллона, полностью заполненного сжиженным газом, величина возросшего при этом давления рассчитывается по формуле

р = ∆t ·α/β (15)

где: ∆t – диапазон повышения температуры содержимого баллона, град.;

α – коэффициент объёмного теплового расширения газа, содержащегося в баллоне;

β – коэффициент объёмного теплового сжатия сжиженного газа, содержащегося в баллоне;

Для большинства газов, использующихся в промышленности, величина α больше β на порядок, что при повышении ∆t на 10 градусов даёт прирост давления на 100 атм.