Мир Знаний

Безопасность эксплуатации оборудования блока генератор-трансформатор мощностью 250 мВт (стр. 2 из 3)

- электрические (осуществляют разрыв цепи специальными контактами, которые устанавливают на дверях ограждений, крышках и дверцах кожухов);

- механические (применяются в электрических аппаратах – рубильниках, пускателях, автоматических выключателях и т.д.).

В рассматриваемом блоке генератор-трансформтор предусмотрены механические блокировки безопасности на блочных разъединителях QS1 и QS2 для избежания ошибочных включений заземляющих ножей при замкнутых разъединителях.

2.4 Методы ориентации

Методы ориентации позволяют ориентироваться персоналу при выполнении работ и предостерегают от ошибочных действий. Методами ориентации служат:

1. Маркировка частей электрооборудования, служит для распознавания принадлежности и назначения оборудования. Выполняется с помощью условных обозначений (буквенных, цифровых).

2. Предупредительные сигналы, подписи, таблички.

3. Знаки безопасности, наносятся на корпуса оборудования, на входах и опорах. Фон желтый (или фон интерьера), стрелка черная или красная.

4. Соответствующее расположение и раскраска токоведущих частей.

При переменном токе:

- фаза «А» располагается верхней левой (желтый цвет);

- фаза «В» - средняя (зеленый цвет);

- фаза «С» - нижняя правая (красный цвет).

- нулевые шины: при изолированной нейтрали - голубые; при заземленной - продольные полосы желтого и зеленого цвета.


3. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ

При аварийном режиме работы блока генератор-трансформатор безопасность его эксплуатации обеспечивается защитным заземлением. Конструктивно, защитное заземление представляет собой совокупность заземлителя и заземляющих проводников.

Исходные данные для расчета:

1) Напряжение установки 20кВ

2) Ток однофазного замыкания на землю IЗ = 9,92кА

3) Расчетное удельное сопротивление верхнего и нижнего слоев земли

r1=100 Ом×м, r2 = 70 Ом×м, соответственно, толщина верхнего слоя грунта h = 2м.

Заземлитель предполагается изготовить из горизонтальных полосовых электродов сечением 4х40 мм и вертикальных стержневых электродов длиной l = 5м,

5м  l  20м l = 5м Условие выполняется диаметром d =12 мм; глубина заложения электродов в землю Н = 0,6 м.(ПУЭ, п.1.7.51.).

Изобразим план (а) и горизонтальный разрез (б) заземления (Рис. 5.2.). По контуру заземления по его ширине проложены 8 и по длине 5 горизонтальных полос.

1. Определяем суммарную длину горизонтального заземлителя:

L = 7×90 + 10×60 = 1230 м, где 7 полос по 90 м и 10 полос по 60 м.

Принимаем среднее расстояние между горизонтальными и вертикальными электродами аср = 2×5 = 10 м.

0,5  аСР / l  40 аСР / l = 10 / 5 = 2 Условие выполняется

Вертикальные стержневые электроды расположены по контуру площади заземления. Количество электродов n =30. Площадь заземляющего контура: S = 90×60 = 5400м2

S = 40010000м2 S = 5400м2

Условие выполняется

Для расчета применяем метод наведенных потенциалов, который учитывает двухслойную структуру грунта.

Так как m = r1/r2 = 100/70 = 1,429 < 2, то обобщенный параметр Т:

0,5  Т1  40 T1 = 8,369

Условие выполняется

Проверим справедливость примененного метода расчета заземления. Метод справедлив при следующих ограничениях:

0,5  Т1  40 T1 = 8,369

5м  l  20м l = 5м

0,5  аСР / l  40 аСР / l = 10 / 5 = 2

L /

= 440 L /
= 16,738

h = 15м h = 2м

H = 0,4м H = 0,6м

S = 40010000м2 S = 5400м2

Метод выбран верно.

2. Определяем значения промежуточных обобщенных параметров из табл.8.4 [2];

СВ = 0,52; ЕВ = 0,239 + 0,0693×h = 0,239 + 0,0693×2 = 0,3776

Сb = 0,149; Еb = 0,338 + 0,0425×h = 0,338 + 0,0425×2 = 0,423

3. Определяем значения параметров В и b:

В = СВ×(r1 / r2)ЕВ = 0,52×(100 / 70)0,3776 = 0,595

b = Сb×(r1 / r2)Еb = 0,149×(100 / 70)0,423 = 0,171

7. Сопротивление заземления:


Сравниваем полученные значения сопротивления с допустимыми:

RЗ = 0,394 Ом < RДОП = 0,5 Ом. Условие выполняется

Сопротивление заземления меньше нормы.

Произведем проверку заземления:

Определяем напряжение на заземлителе при стекании по нему тока замыкания на землю:

UЗ = IЗ×RЗ = 9920×0,394 = 3908,48 В < 10000 В

Условие выполняется

Определяем напряжение прикосновения:

UПР = IЗ×RЗ×a1 = 9920×0,394×0,03 = 117,25 В

где: a1-коэффициент напряжения прикосновения:

a1= МТ1-m = 0,526×(8,369)-1,429 = 0,03

Параметр М = f(m) определяем из таблицы 10.8 [2]: m = 1,429, М = 0,526.

Сравниваем Uпр = 117,25 В < Uпр.доп = 400 В для времени t = 0,2с.

Условие выполняется

Проверяем термическую стойкость заземлителя:


где: r1=100 Ом м – удельное сопротивление верхнего слоя грунта;

t = 0,1 с – длительность замыкания во время срабатывания защиты, которое складывается из собственного времени отключения выключателя 0,09 с, [2], и времени действия максимальной токовой защиты 0,01 с, [2].

Суммарная поверхностная площадь S заземления складывается из поверхности вертикальных стержней и поверхности горизонтальных полос:

где: l = 5 м – длина вертикальных электродов;

d = 0,012 м – диаметр вертикальных электродов;

nв = число вертикальных электродов;

рг = 88×10-3 м – периметр поперечного сечения (4х40), мм2, горизонтальной полосы;

L = 1230 м – суммарная длина горизонтальных полос.


т.е., условия термостойкости выполняются.


Проверяем термическую стойкость заземляющих проводников:

где: a = 21 – постоянный множитель;

= 400 0С – допустимая температура кратковременного нагрева стали;

Iз = 9920 А – ток замыкания на землю.

Sсеч = 4х×40 = 160 мм2 - площадь поперечного сечения горизонтальной полосы.


Таким образом:

Условие выполняется, заземление пригодно к эксплуатации.


4. ЭЛЕКТРОЗАЩИТНЫЕ СРЕДСТВА

Согласно ГОСТ 12.1.009-76 электрозащитными средствами называются переносные и перевозные изделия, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия дуги и электромагнитного поля.

На блоке генератор-трансформатор имеются следующие электрозащитные средства:

№ п/п Средства защиты Электрооборудование напряжением Тип Кол-во
1. 2. 3. 4. 6. 7. 8. 9. 10. 11. Изолирующая штанга Изолируещая штанга Оперативная штанга Изолирующие клещи Измерительная штанга Указатель напряжения УВН Диэлектрические перчатки Диэлектрические боты Защитные очки Защитные каски(каждому рабочему) Переносные заземления 35 330 35 35 330 до 35 ШИ-35У4 ШИ-35У4 ШО-35 У4 ШИУ-330 УВН-10У4 1 шт. 1 шт. 2 шт. 1 шт. 1 шт. 1 шт. 2 пары 2 пары 2 шт. по 1шт. 2 шт.

В помещении блочного щита управления для хранения электрозащитных средств отводится место вблизи входа, которое оборудуется стеллажами, полками, шкафами и приспособлениями для хранения штанг, переносных заземлений, плакатов, переносных ограждений и др.


5. Пожарная безопасность

Для охлаждения обмоток турбогенератора используется водород, который является взрывоопасным веществом. Так как турбогенератор расположен в помещении, в котором при нормальной эксплуатации взрывоопасные смеси газа с воздухом не образуются, а возможны только в результате аварий или неисправностей, то согласно ПУЭ помещение турбогенератора относится к классу В-Iа по взрывоопасности - (зоны, расположенные в помещениях, в которых при нормальной эксплуатации взрывоопасные смеси горючих газов, независимо от нижнего концентрационного предела воспламенения, или паров ЛВЖ с воздухом не образуются, а возможны только в результате аварий или неисправностей).

По классу возникновения пожаров электроустановка относится к классу Е - (пожары связаны с горением электроустановок).

Для охлаждения обмоток трансформатора используется трансформаторное масло. Трансформатор расположен вне помещения машзала, поэтому зона вокруг трансформатора относится к пожароопасной зоне класса П-III и категории В.

В электроустановках причины пожаров и взрывов могут быть электрического и неэлектрического характера.

Причинами электрического характера являются:

· искрение в электрических аппаратах и машинах;

· токи коротких замыканий и токовые перегрузки проводников, вызывающие их перегрев до высоких температур, что может привести к воспламенению их изоляции;

· неудовлетворительные контакты в местах соединения проводов, когда вследствие большого переходного сопротивления при протекании электрического тока выделяется значительное количество тепла и резко повышается температура контактов (местный нагрев).