Смекни!
smekni.com

Прогнозирование и оценка последствий завалов (стр. 2 из 4)

При расчете высоты завала по формуле (2.13) дальность разлета обломков для аварий со взрывом рекомендуется принимать равной половине высоты здания (L= Н/2).

Рис. 2. Расчетная схема образования завала при различных давлениях во фронте воздушной ударной волны

Н1, hn, 11, 1n– соответственно высота и длина завала;

DP1, DPi, DPn– значения давлений (DP1<DPi<DPn);

В – размер здания.

Высота завала на различных расстояниях х: от здания зависит от высоты завала в пределах контура здания и дальности l разлета обломков

Показатель g в формуле (12) при ориентировочных расчетах рекомендуется принимать равным:

– для промышленных зданий g = 20 м3;

– для жилых зданийg = 40 м3.

Более точные значения показателей g, с учетом различных типов и конструктивных решений зданий, приведены в табл. 1. Эти данные получены на основе статистической обработки соответствующих показателей натурных завалов.

Таблица 1. Объемно-массовые характеристики завала.

Тип здания Пустотность (a), м3 Удельный объем (g), м3 Объемный вес (b), т/м3
Производственные здания:
одноэтажное легкого типа 40 14 1,5
одноэтажное среднего типа 50 16 1,2
одноэтажное тяжелого типа 60 20 1
Многоэтажное 40 21 1,5
Смешанного типа 45 22 1,4
Жилые дома бескаркасные:
Кирпичное 30 36 1,2
Мелкоблочное 30 36 1,2
Крупноблочное 30 36 1,2
Крупнопанельное 40 42 1,1
Жилые здания каркасные:
со стенами из навесных панелей 40 42 1,1
со стенами из каменных материалов 40 42 1,1

Примечания:

1. Пустотность завала (a) – объем пустот на 100 м3 завала, используется при подготовке предложений по технологии спасательных работ, в частности, при проходке галерей в завалах. Анализ информации по разрушению зданий показал, что пустотность завалов промышленных зданий может быть почти в два раза больше жилых.

2. Удельный объем завала (g) – объем завала на 100 м3 строительного объема. Этот показатель используется при определении высоты завала (4) и объема завала (1).

3. Объемный вес завала (b) – вес в т 1 м3 завала.

На основании обобщения расчетов получена формула для определения высоты завала при оперативном прогнозировании

, м (15)

где Н – высота здания в м;

g – объем завала на 100 м3 объема здания;

k – показатель, принимаемый равным:

для взрыва вне здания k = 2; для взрыва внутри здания k = 2,5.

Высота завалов при землетрясениях

При землетрясениях высота завала рассчитывается по тем же формулам, но с учетом поправки на расчетную схему завала (рис. 2.1). Объем обелиска в этом случае равен

(16)

где АЗАВ, ВЗАВ – размеры нижних граней обелиска (длина и ширина завала);

AЗАВ= A + 2L; BЗАВ = B + 2L;

А1 и В1 – размеры верхних граней обелиска;

A1 = A – 2L; B1 = B – 2L.


При оперативном прогнозировании высоту завала для землетрясения рекомендуется определять по формуле (15), в которой показатель К принимается равным К=0,5.

Потери населения

Для ориентировочного определения безвозвратных потерь населения (персонала) вне зданий и убежищ можно использовать формулу:

(17)

где Р – плотность населения (персонала), тыс. чел./км2;

Gтнт – тротиловый эквивалент, т.

Санитарные потери принимают равными:

(18)

Общие потери:

(19)

Таблица 2. Потери персонала на объекте, Сi (%).

Степень Степень защищенности персонала
Разрушения Не защищен В зданиях В защитных сооруж.
Зданий Общие Безвозвр. Общие Безвозвр Общие Безвозвр
СлабаяСредняяСильнаяПолная 81280100 392530 1,2 3,53040 0,4 1,01015 0,31,02,57,0 0,10,30,82,5

При определении потерь среди персонала объекта экономики необходимо учитывать степень его защищенности в зданиях и сооружениях и степень разрушения последних:


, чел, (20)

где Ni– количество персонала на объекте , чел;

n– число зданий (сооружений) на объекте;

Сi – процент потерь, % (табл. 2)

Взрыв конденсированных ВВ

Для определения зависимости избыточного давления на фронте ударной волны DPф, кПа, от расстояния R, м, до эпицентра взрыва конденсированного взрывчатого вещества наиболее часто используют формулу М.А. Садовского, применимую для наземного взрыва, а также для воздушного взрыва на R > 8h (h – высота взрыва)

, (21)

Таблица 3.Степень разрушения объектов в зависимости от избыточного давления DРф, кПа

Объект Давление DРф ,кПа, соответствующее степени разрушения
Полное Сильное Среднее Слабое*
Здания
Жилые
кирпичные многоэтажные 30…40 20…30 10…20 8…10
кирпичные малоэтажные 35…45 25…35 15…25 8…15
Деревянные 20…30 12…20 8…12 6…8
Промышленные
с тяжелым метал. или ж/б каркасом 60…100 40…60 20…40 10…20
с легким метал. каркасом или бескаркасные 80…120 50…80 20…50 10…20
Промышленные объекты
ТЭС 25…40 20…25 15…220 10…15
Котельные 35…45 25…35 15…25 10…15
трубопроводы наземные 20 50 130
трубопроводы на эстакаде 20…30 30…40 40…50
трансформаторные подстанции 100 40…60 20…40 10…20
ЛЭП 120…200 80…120 50…70 20…40
водонапорные башни 70 60…70 40…60 20…40
Станочное оборудование 80…100 60…80 40…60 25…40
Кузнечно-прессовое оборудование 200…250 150…200 100…150 50…100
Резервуары, трубопроводы
стальные наземные 90 80 55 35
газгольдеры и емкости ГСМ и хим. Веществ 40 35 25 20
частично заглубленные для нефтепродуктов 100 75 40 20
Подземные 200 150 75 40
Автозаправочные станции 40…60 30…40 20…30
Перекачивающие и компрессорные станции 45…50 35…45 25…35 15…25
резервуарные парки (заполненные) 90…100 70…90 50…80 20…40
Транспорт
металлические и ж/б мосты 250…300 200…250 150…200 100…150
ж/д пути 400 250 175 125
тепловозы с массой до 50 т 90 70 50 40
Цистерны 80 70 50 30
Вагоны цельнометаллические 150 90 60 30
Вагоны товарные деревянные 40 35 30 15
автомашины грузовые 70 50 35 10

Примечание:* Слабые разрушения - повреждение или разрушение крыш, оконных и дверных проемов. Ущерб – 10 – 15% от стоимости здания.

Средние разрушения – разрушения крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб – 30 – 40%.

Сильные разрушения – разрушение несущих конструкций и перекрытий. Ущерб – 50%. Ремонт нецелесообразен.

Полное разрушение – обрушение зданий.

При вероятностном методе поражающее действие ударной волны определяется как избыточным давлением на фронте ударной волны DРф, кПа, так и импульсом фазы сжатия ударной волны I+, кПа.с.

Величину импульса фазы сжатия I+, кПа.с на расстоянии R, м от эпицентра взрыва для ориентировочных расчетов можно определить по приближенной формуле

(22)

Здесь Gтнт – «тротиловый эквивалент», равный массе тринитротолуола (тротила), при взрыве которой выделяется такое же количество энергии, как и при взрыве рассматриваемого взрывчатого вещества G, кг. Величина Gтнт, кг, определяют по формуле

(23)

где Qv,вв и Qv,тнт , кДж/кг, – энергии взрыва, соответственно, рассматриваемого взрывчатого вещества и тротила, приведенные в табл. 4.

Таблица 4. Энергии взрыва конденсированных взрывчатых веществ.

Взрывчатое вещество Qv ,кДж/ кг Взрывчатое вещество Qv ,кДж/ кг
ИндивидуальныеТротил (ТНТ)ГексогенОктогенНитроглицеринТетрилГремучая ртуть 4520 5360 5860 6700 4500 1790 СмесиАмматол 80/20 (80% нитрата + 20% ТНТ)60%нитроглицериновый динамитТорпекс (42% гексогена + 40%ТНТ +18%Al)Пластическое ВВ (90% нитроглицерина + 8% нитроцеллюлозы + 1% щелочи+0,2% Н2О) 2650 2710 7540 4520

Таблица 5. Выражения пробит-функций для разных степеней поражения (разрушения).