Смекни!
smekni.com

Действие на организм человека электрического тока и первая помощь пострадавшим от него (стр. 10 из 13)

В первом случае длина волны много больше, чем размер препятствия; при этом характерны интерференция звуковых волн, огибание ими препятствий и распространение на большие расстояния (много больше длины волны).

Во втором случае размер объекта много меньше длины волны; при этом звуковая волна ведет себя как частица.

Для диапазона слышимости человеческого уха имеем длины волн, приведенные в таблице 3:

Таблица 3

f, Гц

2

5

20

100

...

1000

10000

λ, м

150

60

15

3

0,3

0,03

Принято, что

где 300 м/сек – скорость звука в воздухе.

Несложный анализ показывает, что в своей жизнедеятельности человек имеет дело с объектами, при взаимодействии с которыми звук может вести себя и как волны, и как частицы. Поэтому точный расчет распространения звука в реальных условиях чрезвычайно сложен; в расчетах приходится использовать эмпирические формулы. Кроме того, несложно отметить следующие общие закономерности:

- низкочастотные звуковые колебания (и тем более инфразвук) обладают ярко выраженными волновыми свойствами; они плохо поглощаются преградами и распространяются на большие расстояния. Эта особенность оказалась особенно неприятной в современном индустриальном обществе: обитатели мегаполисов живут и работают в едином инфразвуковом пространстве, причем уровни излучения уже представляют заметную опасность для здоровья и жизни;

- высокочастотные звуковые колебания чаще ведут себя как частицы; эта особенность важна как при распространении звука, так и при разработке мер по его ослаблению.

При изучении особенностей распространения фононов полезно вспомнить некоторые закономерности, связанные с соударением частиц (рис. 3.3; рассмотрено упругое центральное соударение шаров).

При взаимодействии звуковой волны с войлоком, пенополиэтиленом и т.п. средние удельные массы воздуха, в котором распространяется звук, и преграды примерно равны. При этом по закону сохранения количества движения фонон потеряет свою энергию, передав ее ворсинкам и т.п. Упругая деформация ворсинок превратится в тепло; войлок, пенополиэтилен и т. п. «хорошо поглощают звук».

При падении звуковой волны или фононов на массивную преграду закон сохранения импульса запрещает заметную передачу энергии преграде; звук отражается, почти полностью сохраняя свою энергию. Это обстоятельство:

- помогает созданию концертных залов и больших учебных аудиторий; в них звуковая волна суммируется 10 – 30 раз;

- создает повышенное шумовое загрязнение в современных мегаполисах: например, проспекты, состоящие из высоких зданий, многократно усиливают шум транспорта;

- служит основой проектирования кожухов и т. п., «герметизирующих» шумы в источнике.

6. Особенности расчета отражения и поглощения шума в лабораторной работе.

В лабораторной работе в качестве преграды используется пластина из алюминия; для расчета ослабления шума можно использовать полуэмпирическую формулу:

(3)

здесь γ –плотность; (γ = 2,7×10 3 кг/м3);

- hтолщина преграды, м;

- S - единичная площадь; S = 1 м2

- fчастота, Гц.

Формула учитывает передачу энергии преграде фононами; она называется «формулой масс» - эффективность отражения энергии пропорциональна «погонной массе»

γ× h, кг/м2и частоте звука.

Для расчета звукопоглощения можно использовать формулы:

(4)

где: α1коэффициент звукопоглощения необлицованных стен;

S1площадь необлицованных стен; S1= 0,3 м2;

α2 - коэффициент звукопоглощения стен с облицовкой;

S2 - площадь стен с облицовкой; S2= 0,6 м2.

Расчет произвести для одной частоты; значения коэффициентов взять в соответствии с таблицей 4:

Таблица 4

Номер бригады

1

2

3

4

5

Номер варианта

1

2

3

4

5

α1

0,05

0,10

0,15

0,075

0,12

α2

0,50

0,65

0,7

0,75

5

Предполагается, что расчет ведется для частоты 1000 Гц.

7. Особенности воздействия звуковых волн и шумов на организм человека. Нормирование шума.

Шум, в первую очередь, приводит к дискомфорту и снижению производительности труда; он не является причиной несчастных случаев, но может привести к профессиональным заболеваниям.

Исследования показали, что увеличение уровня шума на 1 – 2 дБ (или его энергии на 30 – 60%) сверх нормативных значений приводит к снижению производительности труда на 1%.

Шум с уровнем до 30 – 35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40 - 70 дБ в условиях среды обитания создает излишние нагрузки на нервную систему, вызывая ухудшение самочувствия. Воздействие шума с уровнем свыше 75 дБ может привести к потере слуха. При действии шума с уровнем более 140 дБ возможен разрыв барабанных перепонок; при уровне более 160 дБ – смерть.

Нормируемы параметры шума на рабочих местах определены ГОСТ 12.1.003-89 ССБТ. При нормировании используются два метода:

- по предельному спектру (ПС ),

- по шкале А шумомера (дБА).

Первый метод нормирования является основным для постоянных шумов. При этом нормативные документы устанавливают предельно-допустимые уровни шума на рабочих местах в зависимости от вида производственной деятельности. Нормирование ведется в октавных полосах со среднегеометрическими частотами fсг= 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Совокупность девяти допустимых уровней звукового давления называется предельным спектром (ПС). Каждый предельный спектр имеет свой индекс. Например, ПС-60 означает, что допустимый уровень звукового давления Lдоп=60 дБ на частоте 1000 Гц. С увеличением частоты допустимые уровни шума уменьшаются.

Если частотный спектр отсутствует, то для ориентировочной оценки постоянного шума, а также непостоянного шума используют уровень звука (дБА),определяемый по шкале А шкмомера. Приэтом выполняется следующее соотношение в соответствии выражением (2):

L(дБА) = L(ПС) + 5 дБ. (2)

Для разных видов производственной деятельности приняты значения предельных спектров, приведенные в таблице 5.

Таблица 5

Рабочие места

Норма, ПС (указаны дБ при частоте 1000Гц)

Больницы, санатории; ночь

ПС - 30

Больницы, санатории; день

ПС - 40

Жилые помещения; день; внутри здания

ПС - 45

Жилые помещения; день; снаружи здания

ПС - 50

Помещения конструкторских бюро, расчетчиков, программистов и т. п.

ПС - 45

Помещения управления, рабочие комнаты

ПС - 55

Помещения и участки точной сборки; машинописные бюро

ПС - 60

Помещения лабораторий, для размещения агрегатов, вычислительных машин

ПС - 75

Постоянные рабочие места в производственных помещениях и на территории предприятий

ПС - 80

Повышенный шум действует как на органы слуха (специфические изменения), так и на весь организм человека (неспецифические изменения).

У человека, находящегося в условиях повышенного шума, через 5 лет слух ухудшается, а через 10 лет может возникнуть глухота.

Неспецифическое воздействие шума проявляется, в первую очередь, в нарушениях нервной и нервно - сосудистой деятельности. При длительном воздействии шума возрастает артериальное давление, появляется раздражительность, апатия, подавленное настроение. Возможно также ослабление памяти, замедление психических реакций и ухудшение качества переработки информации.

В последнее время наряду с шумом начинает уделяться внимание воздействию па людей инфразвука и ультразвука.

Инфразвук, как следует из формулы (3), почти не задерживается преградами. Поэтому он распространяется на очень большие расстояния. В крупных городах происходит наложение всех видов низкочастотного шума, уровень его становится опасным для здоровья жителей.

Инфразвук вызывает чувство страха, потерю ориентировки в пространстве, вредно воздействует на сердечно – сосудистую систему; отмечают возникновение сонливости и нарушение чувства равновесия.