Смекни!
smekni.com

Сущность электромагнитных полей (стр. 4 из 4)

3.2. Биофизика взаимодействия ЭМИ с биологическими объектами

Организм человека осуществляет свою деятельность путем ряда сложных процессов и механизмов и, в том числе, с использованием внутри- и внеклеточной электромагнитной информации и соответствующей биоэлектрической регуляции. Электромагнитная среда обитания фактически может быть рассмотрена как источник помех в отношении жизнедеятельности человека и биоэкосистем. В этой связи возникает проблема биоэлектромагнитной совместимости как весьма сложной системы взаимодействия живой природы и технических средств, источников ЭМИ. В этой ситуации живой организм вынужден постоянно искать защиту от быстро меняющейся обстановки, используя свои внутренние возможности.

При взаимодействии электромагнитных излучений с биологическими объектами лишь часть энергии поглощается. В этом случае используют следующий принцип: только та часть энергии излучения может вызвать изменения в веществе, которая поглощается этим веществом; отраженная или проходящая энергия не оказывает никакого действия (принцип Гроттгосуса).

Это взаимодействие носит биофизический характер, т.е. происходит процесс поглощения и непосредственного распределения поглощенной энергии на уровне биотканей целого организма. При этом тканевые системы называются биомикросистемами, а отдельные части тела (голова, туловище и т.д.) - биомакросистемами.

В отличие от ионизирующего излучения, которое непосредственно создает электрические заряды, электромагнитные излучения не обладают ионизирующей способностью и воздействуют только на уже имеющиеся свободные заряды или диполи. Диэлектрические свойства биотканей сильно зависят от их химического состава, частоты колебаний, происходящих внутри биологического объекта. Электромагнитные свойства определяют процессы прохождения энергии через слои вещества, отраженной на границах их раздела, и поглощения внутри тканей.

При взаимодействии электромагнитного излучения с биовеществом возникают два типа эффекта, определяющих диэлектрические свойства тканей. Колебания свободных зарядов (ионов) приводят к увеличению токов проводимости и потере энергии, связанной с электрическим сопротивлением среды. Вращение дипольных молекул с частотой приложения электромагнитного излучения влияет на токи смещения и диэлектрические потери, обусловленные вязкостью среды.

Диэлектрические свойства биотканей описываются диэлектрической проницаемостью и проводимостью. Магнитные свойства биотканей описываются магнитной проницаемостью. Хотя все биоткани являются слабыми диа- и парамагнетиками, близкими по свойствам к вакуумной среде, рассеяние магнитной энергии в биообъекте может быть значительным в зависимости от размеров и электрических свойств этих объектов.

Диэлектрические свойства биотканей существенно зависят от частоты электромагнитных колебаний. Эти зависимости показаны на (рис. 14, 15).

Рис. 14. Зависимость мнимой диэлектрической проницаемости биотканей с высоким содержанием воды от частоты электромагнитных колебаний

Рис. 15. Зависимость проводимости биотканей с высоким содержанием воды от частоты электромагнитных колебаний

При воздействии на биоткань электрических излучений она поляризуется, и ионные токи будут протекать только по межклеточной жидкости, т.к. мембраны клеток, являясь хорошими изоляторами, отделяют внутриклеточное содержание. Это справедливо для постоянного электрического поля.

При частоте, меньшей 10 кГц, период электромагнитных колебаний достаточно большой для того, чтобы клеточные мембраны успели перезарядиться за счет ионов вне и внутри клетки. Это объясняет наличие низкой удельной ионной проводимости даже для тканей с высоким содержанием воды. При этом полный заряд и диэлектрическая проницаемость ткани за период колебаний велики. Последующий рост удельной проводимости происходит вследствие уменьшения емкостного сопротивления мембран с увеличением частоты. Неполная перезарядка изолированных мембран вовлекает внутриклеточную жидкость в процесс образования ионных токов, проводимость ткани плавно увеличивается, а ее диэлектрическая проницаемость падает.

Лавинное вовлечение внутриклеточной среды в процесс образования ионных токов на частотах 10 кГц ...100 кГц вызывает резкое возрастание удельной проводимости. Кроме того, поляризация молекул тканей, в основном молекул воды, приводит к возникновению токов смещения, увеличивающих токи в тканях при тех же амплитудах напряженности электрического поля, т.е. уменьшает их удельное сопротивление.

При частотах 100 кГц ...10 МГц мембраны все меньше и меньше перезаряжаются, и емкостное сопротивление биоткани падает. Содержимое клеток все активнее включается в процесс образования ионных токов, т.е. проводимость ткани продолжает возрастать, а ее диэлектрическая проницаемость уменьшается. При этом значительно возрастают поляризация молекул и обусловленные ею токи смещения, что приводит к увеличению суммарных токов в биотканях.

При частотах больше 10 МГц емкостное сопротивление мембран клеток становится таким малым, что клетку считают короткозамкнутой. Поляризация молекул и токи смещения становятся доминирующими. Возбужденные молекулы приходят в колебательное движение, сталкиваются с псевдовозбужденными и передают им свою энергию, расходуемую на тепло и химические преобразования. Поэтому проводимость резко возрастает, а диэлектрическая проницаемость меняется незначительно.

3.3. Реакция организма человека на воздействие ЭМ излучений

Среди всего спектра наибольшей биологической значимостью и выраженностью симптоматики выделяются ЭМИ РЧ и СВЧ. В зависимости от интенсивности и продолжительности воздействия ЭМИ РЧ и СВЧ вызываемые изменения в организме подразделяют на изменения острого (термогенного) и хронического (атермального) воздействия.

Острое воздействие обусловлено термическим воздействием ЭМИ, как правило, при нарушении техники безопасности.

Термогенное воздействие обычно носит локальный характер, а возникающая симптоматика определяется топографией облучаемой области. При облучении пострадавшие ощущают тепло в месте воздействия, схожее с действием солнечных лучей. Иногда отмечают также общее недомогание, головную боль, головокружение, тошноту, рвоту, чувство страха, жажду, легкую слабость, боли в конечностях, повышенную потливость.

У пострадавших наблюдаются повышение температуры тела, приступы тахикардии, нарушение сердечной деятельности, артериальная гипертензия. В ряде случаев в клинике острых воздействий могут преобладать диэнцефальные расстройства. Субъективная и объективная симптоматика у пострадавших через несколько дней исчезает, все клинические показатели приходят к доклиническому уровню, полностью восстанавливается работоспособность.

Немногочисленные клинические наблюдения острого теплового действия ЭМИ на человека указывают на возможность локальных остаточных структурных изменений органов и тканей (ожогов, катаракты, атрофии семенников и т.д.).

Данные эпидемиологического изучения отдаленных последствий, предписываемых влиянию ЭМИ, в том числе возникновения специфических заболеваний крови, показывают, что нахождение стойких изменений в крови в условиях воздействия реально существующих уровней ЭМИ у профессионалов и тем более у населения представляется весьма проблематичным.

Представленные данные клинико-эпидемиоло­гических исследований о влиянии ЭМИ РЧ и СВЧ на организм человека свидетельствуют, что выраженность наблюдаемых изменений зависит от интенсивности и времени воздействия.

Общая картина изменений под влиянием различных уровней ЭМИ представлена в табл. 5.


Таблица 5

Возможные изменения в организме человека под влиянием ЭМИ различных интенсивностей

Интенсивность ЭМИ, мВт/см2

Наблюдаемые изменения

600

Болевые ощущения в период облучения

200

Угнетение окислительно-восстановительных процессов в ткани

100

Повышенное артериальное давление с последующим его снижением; в случае воздействия - устойчивая гипотензия. Двухсторонняя катаракта

40

Ощущение тепла. Расширение сосудов. При облучении 0,5-1 ч повышение давления на 20-30 мм рт. ст.

20

Стимуляция окислительно-восстановительных процессов в ткани

10

Астенизация после 15 мин. облучения, изменение биоэлектрической активности головного мозга

8

Неопределенные сдвиги со стороны крови с общим временем облучения 150 ч, изменение свертываемости крови

6

Электрокардиографические изменения, изменения в рецепторном аппарате

4-5

Изменение артериального давления при многократных облучениях, непродолжительная лейкопения, эритропения

3-4

Ваготоническая реакция с симптомами брадикардии, замедление электропроводимости сердца

2-3

Выраженный характер снижения артериального давления, тенденция к учащению пульса, незначительные колебания объема сердца

1

Снижение артериального давления, тенденция к учащению пульса, незначительные колебания объема крови сердца. Снижение офтальмотонуса при ежедневном воздействии в течение 3,5 месяцев

0,4

Слуховой эффект при воздействии импульсных ЭМП

0,3

Некоторые изменения со стороны нервной системы при хроническом воздействии в течение 5-10 лет

0,1

Электрокардиографические изменения

до 0,05

Тенденция к понижению артериального давления при хроническом воздействии

Заключение

Последние достижения прогресса, призванные повысить комфортность жизни, к сожалению, значительно влияют на здоровье человека.

Электромагнитные излучения оказывают пагубное воздействие на такие системы человеческого организма, как нервная, иммунная, эндокринно-регулятивная и половая системы.

Рядом с человеком, в его повседневной жизни, дома и на работе находятся электроприборы создающие излучение: компьютеры, телевизоры, микроволновые печи, мобильные телефоны.

Сказать какое комплексное воздействие они оказывают на человека сложно, понятно только что оно не является положительным.