44 Цветовое оформление производственного интерьера
Цвет окружающих нас предметов влияет на эмоции (положительные или отрицательные) и на настроение людей. Для различны объектов выделены так называемые оптимальные цвета к-рыми рекоменд.пользоваться для наилучшего цветового климата. Проектирование цветового решения интерьера цехов и помещений следует выполнять в соответствии с «указаниями по проектированию цветовой отделки интерьеров произв.зданий промюпредприятий»(СН 181-70) в к-рых приведены таблицы для выбора цветовой гаммы для окраски интерьеров в соотв.технолог.процессу и хар-ру труда.
45 Системы отопления
Во время проектирования системы отопления для промышленных помещений производственных предприятий вы можете столкнуться с рядом различных вопросов, которые могут повлиять на итоговые технические решения. Основным из этих вопросов является количество необходимой теплоэнергии, которое сможет поддержать необходимую температуру здания. Для того чтобы ответить на данный вопрос необходимо произвести соответствующие теплотехнические расчеты. Поговорим о мощности отопительной системы. Она напрямую зависит от таких показателей, как:
· Термосопротивление ограждающих конструкций
· Размер отапливаемого помещения
· Климатические условия местности
· Размещение здания относительно порывов ветра
Расчетная мощность системы отопления может выражаться в таких величинах, как сотни и долее киловатт. Это объясняется, прежде всего, тем, что производственные цеха могут иметь площадь в сотни и даже тысячи квадратных метров. Следует заметить, что обеспечить такое количество теплоэнергии может мини-котельная или центральный источник. Среди достоинств автономных источников тепла необходимо выделить мгновенное реагирование на изменение температуры. В централизованной системе отопления это является невозможным. Именно поэтому одним из самых эффективных способов сокращения расходов на предприятии становится использование автономных котельных и децентрализация теплоснабжения. Итак, подведем итоги. С помощью автономных источников тепла вы можете обеспечить исключительно выгодное и экономное отопление помещений производственных предприятий. Отопление – важный неотъемлемый элемент для любого жилого и нежилого помещения. Без него просто не возможно комфортное проживание и существование человека. В ходе многих веков, с системами отопления произошли существенные изменения. Сегодня это современные комфортные безопасные системы, содержащие множество функций, оснащенные новейшим цифровым оборудованием с автоматизированным управлением. Установка таких систем под силу только профессионалам.
46 Приборы для измерения
Измерение шума
Все методы измерения шума делятся на стандартные и нестандартные.
Стандартные измерения шума регламентируются соответствующими стандартами и обеспечиваются стандартизованными средствами измерения. Величины, подлежащие измерению, так же стандартизованы.
Нестандартные методы применяются при научных исследованиях и при решении специальных задач.
Измерительные стенды, установки, приборы и звукоизмерительные камеры подлежат метрологической аттестации в соответствующих службах с выдачей аттестационных документов, в которых указываются основные метрологические параметры, предельные значения измеряемых величин и погрешности измерения.
Стандартными величинами, подлежащими измерению, для постоянных шумов являются:
- уровень звукового давления Lp, дБ, в октавных или третьоктавных полосах частот в контрольных точках;
- корректированный по шкале А уровень звука LA, дБА, в контрольных точках.
Для непостоянных шумов измеряются эквивалентные уровни Lpэк или LAэк.
Приборы для измерения шума - шумомеры - состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ.
По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений шума. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.
Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры. Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.
В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные. Частотная характеристика фильтра К( f ) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f.
Для измерения производственного шума преимущественно используется шумомер ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях.
Измерение вибрации. Приборы для измерения вибрации
Существует две группы методов измерения параметров вибрации: контактные, подразумевающие механическую связь датчика с исследуемым объектом, и бесконтактные, т.е. не связанные с объектом механической связью.
Контактные методы. Наиболее простыми являются методы измерения вибрации с помощью пьезоэлектрических датчиков. Они позволяют проводить измерения с высокой точностью в диапазоне низких частот и относительно больших амплитуд вибрации, но вследствии своей высокой инерционности, приводящей к искажению формы сигнала делает невозможным измерение вибрации высокой частоты и малой амплитуды. Кроме того, если масса исследуемого объекта, а следовательно и его инерционность не велика, то такой датчик может существенно влиять на характер вибрации, что вносит дополнительную ошибку в измерения.
Эти недостатки позволяет устранить метод открытого резонатора. Суть метода заключается в измерении параметров СВЧ резонатора, изменяющихся вследствие вибрации исследуемого объекта. Резонатор имеет два зеркала, причем одно из них фиксировано , а другое механически связано с исследуемым объектом. Регистрация перемещений при малых амплитудах вибрации производится амплитудным методом по изменению выходной мощности в случае проходной схемы включения резонатора или отраженной мощности, в случае применения оконечного включения. Этот метод измерения требует постоянства мощности, подводимой к резонатору и высокой стабильности частоты возбуждения.