Опрокидывание незакрепленного оборудования произойдет, если смещающая сила Рсм, действуя на плече z = h/2 будет создавать опрокидывающий момент, превышающий стабилизирующий момент от веса оборудования G на плече l/2 (рис. 10).
Он находится по формуле:
Рсм × h/2 > G×l/2, (5)
где Рсм = DРск × S × Cx = DРск × b × h × Cx;
G = mg.
Из формулы (5) можно определить величину DРск, при которой опрокидывания оборудования не произойдет:
(6).Определить предельное значение ΔPф(min), не вызывающее опрокидывание незакрепленного оборудования (шкаф с контрольно-измерительными приборами, металлическое основание) по бетону. Данные для станка те же.
1. По формуле (6) определяем предельное значение давления скоростного напора ΔРск(min), при котором станок еще не опрокидывается:
Из графика рис.8 по величине ΔРск(min) = 2 кПа определяем величину DРФ(min)= 25 кПа.
Отсюда можно сделать вывод: при DРФ> 24 кПа давление скоростного напора воздуха вызовет опрокидывание станка и его сильное разрушение.
Для предотвращения смещения и опрокидывания станка необходимы соответствующие мероприятия: закрепление станка, проектирование защитных устройств для особо ценного оборудования.
При определении устойчивости закрепленного оборудования дополнительно учитывают:
• при возможном смещении – усилия болтов крепления, работающих на срез Qг:
Рсм > Fтр + Qг; (7)
• при возможном опрокидывании – реакцию крепления Q на плече l:
Рсм × z > G × ½ + Ql. (8)
По результатам исследований устойчивость производственного комплекса цехов и других структурных подразделений к воздействию воздушной ударной волны строят сводную таблицу устойчивости к воздушной ударной волне производственного комплекса завода в целом.
Расчетная устойчивость производственного комплекса завода определяется по минимальной величине расчетной устойчивости цеха (отдела, лаборатории и т.п.), выход из строя которых приведет к остановке производства.
2. Определение устойчивости производственного комплекса к воздействию светотеплового излучения
Устойчивость элементов производственных комплексов объектов и их структурных подразделений к действию светотеплового излучения ядерного взрыва заключается:
– в выявлении пожароопасных элементов производственного комплекса;
– в определении (по формулам, таблицам) расчетной устойчивости элементов производственного комплекса к светотепловому излучению – по минимальному значению импульса воспламенения U, кДж/м2;
– в сравнении расчетной устойчивости цехов и других структурных подразделений и объектов с расчетной величиной прогнозируемого светотеплового импульса Uр,кДж/м2;
– в выработке рекомендаций по повышению устойчивости наиболее уязвимых по воспламенению элементов производственного комплекса.
Определить устойчивость механического цеха машиностроительного завода к воздействию светотеплового импульса 1024 кДж/м2.
Пожароопасные (сгораемые) элементы цеха:
- кровля – рубероид;
- двери и окна – деревянные, окрашенные в темный цвет.
1. По табл. П.10 [1] определяем светотепловые импульсы, вызывающие воспламенение сгораемых элементов здания цеха:
- кровля – рубероид – 600 кДж/м2;
- двери и окна – деревянные, окрашенные в темный цвет – 350 кДж/м2.
2. Следовательно, расчетная устойчивость производственного комплекса цеха к светотепловому излучению (по минимальному значению импульса воспламенения) – 350 кДж/м2.
3. Сравниваем это значение с прогнозируемой величиной светотеплового импульса (1024 кДж/м2), можно сделать вывод что производственный комплекс цеха не устойчив к светотепловому излучению ядерного взрыва.
4. Для повышения устойчивости производственного комплекса цеха к светотепловому излучению необходимы противопожарные мероприятия: замена деревянных оконных рам и переплетов на металлические, либо их пропитка антипиренами.
Вторичные поражающие факторы от взрыва: пожары, затопления, заражение местности радиоактивными, химическими и другими веществами могут быть внутренними (от внутренних источников) и/или внешними (от внешних источников).
При определении устойчивости производственных комплексов объектов и их структурных подразделении к действию вторичных поражающих факторов учитывают характер и степень опасности, удаление объекта от источника опасности, особенности метеорологических и топографических условий и т.п.
Так, при возможном взрыве газовоздушной смеси определяют максимальное избыточное давление DРФ, кПа, взрывной волны и его воздействие на производственный персонал и элементы производственного комплекса объекта. А при возможной аварии с выбросом (выливом) аварийно химически опасных веществ (АХОВ) определяют степень воздействия химического заражения местности на производственную деятельность объектов.
1) Формулы для определения DРФ, кПа, при взрыве газовоздушной смеси:
(9) (10)где y =0,24 (RIII / R1)
R1 – радиус зоны I (детонационной волны);
RIII – расстояние от центра взрыва до объекта в пределах зоны III (действия взрывной ударной волны).
2) Формулы для определения радиусов зон I (детонационной волны) и II (действия продуктов взрыва):
(11) (12)где Q – масса газовоздушной смеси, т.
3) Параметры аварии с выбросом (выливом) АХОВ определяются по табл. П.11…П.17 [1].
Определить прогнозируемое максимальное избыточное давление воздушной ударной волны DРФ, кПа, воздействующее на механический цех машиностроительного завода при взрыве емкости с 40 т. пожаро-взрывоопасной (ПВО) смеси, расположенной на расстоянии 330 м от цеха.
По формулам (11) и (12) определяем радиусы I и II зоны.
Т.к. цех расположен в 330 м от емкости, т.е. в зоне III взрывной ударной волны, то определяем значение коэффициента y:
y = 0,24 × (330 / 59,8) = 1,32 < 2.
Следовательно, значение избыточного давления взрывной волны, воздействующей на цех, определяем по формуле (9):
По полученным данным и данным Таблицы 3 можно сделать вывод: при взрыве емкости с 40 т. ПВО смеси здание, оборудование и КЭС будут полностью разрушены, среди персонала – случаи смертельных повреждений.
Объект экономики (машиностроительный завод) расположен в 4,5 км от центра города, под углом α1 = 55° (из примера 1), а химкомбинат, внешний источник опасности, в 7,8 км от центра города, под углом α2 = 210º. На машиностроительном заводе в 1-ой смене работают 140 чел., (в зданиях –120 чел., вне зданий – 20 чел.); во 2-ой смене – 55 чел. (45 чел и 10 чел. соответственно); во 3-ей смене – 30 чел. (20 чел. и 10 чел. соответственно). Обеспеченность производственного персонала противогазами – 80%.
Определить:
· глубину и площадь химического заражения местности АХОВ;
· местоположение завода на зараженной АХОВ местности (в соответствующей зоне ХЗМ);
· время подхода зараженного АХОВ облака к заводу;
· время поражающего действия АХОВ и возможные химические (от АХОВ) потери производственного персонала завода в случае аварии на химкомбинате с выбросом 110 т хлора из обвалованной емкости, в конце работы 2-ой смены. При следующих наиболее вероятных метеоусловиях: полуясно, направление ветра a2 = 250º.
1. Чертим план размещения завода относительно центра города и химкомбината (рис. 11).