Кроме того, повреждения появлялись вследствие неудовлетворительной организации защиты трубопроводов от почвенной коррозии и действия блуждающих токов, из–за повышенных температурных колебаний в течение года (и, следовательно, повышенных температурных напряжений в трубопроводе), в результате размыва грунта под трубопроводом на переходах через водные преграды, оползней, неравномерной осадки грунта после строительства и, наконец, вследствие поставки на строительство некачественных труб (слоистый прокат, неравномерность толщин листов сварных труб, дефекты в заводской сварке и т.д.) [9].
С 1951 по 1965 г зарегистрировано 160 случаев разрушения трубопроводов. Причем, 41,3% составляют сквозные локальные повреждения (свищи), 33,7%– разрывы по монтажным кольцевым стыкам, 20%– разрывы по целому металлу труб и 5% – разрывы по заводским сварным швам.
Однако если рассмотреть разрушения трубопроводов по годам, то можно видеть следующую картину (рисунки 1.7, 1.8).
А - сквозные локальные повреждения (свищи), Б - разрывы по монтажным кольцевым стыкам, В - разрывы по целому металлу, Г - разрушения по заводским сварным швам, Д – другие причины
Рисунок 1.7 – Основные причины ЧС на МНП за период 1951–1958 гг.
Из рисунка 1.7 следует, что основными причинами ЧС на МНП за период 1951–1958 гг. являются сквозные локальные повреждения (свищи) и разрывы по монтажным кольцевым стыкам, а за период 1959–1965 гг. (см. рисунок 1.8) к этим причинам прибавилась еще одна не менее значимая, разрывы по целому металлу.
А - сквозные локальные повреждения (свищи), Б - разрывы по монтажным кольцевым стыкам, В - разрывы по целому металлу, Г - разрушения по заводским сварным швам, Д – другие причины
Рисунок 1.8 – Основные причины ЧС на МНП за период 1959–1965 гг.
Свищи в 95 % случаев образуются в результате действия на трубопровод блуждающих токов (не была предусмотрена катодная защита, так как проекты трубопроводов были составлены значительно раньше электрификации железных дорог, пролегающих вблизи них) и только 4–5% –агрессивными грунтами (почвенной коррозией). Анализ аварий, произошедших до 1982 года [5], показывает, что в зависимости от года эксплуатации нефтепровода процентное отношение причин разрушений изменяется (таблица 1.2). По представленным данным можно сделать вывод, что коррозионное разрушение трубопроводов занимает первое место, и с течением времени его доля увеличивается. Это связано с тем, что к началу 80–х годов не были разработаны устройства, позволяющие контролировать толщину стенок трубопровода в процессе эксплуатации. Также перед промышленным комплексом не стояла задача очистки нефти вблизи промысла, и нефть перекачивали в неочищенном виде на большие расстояния.
Таблица 1.2 – Разрушения (в % к общему числу) в период эксплуатации в зависимости от различных причин
Причины | Годы эксплуатации | |
4-й | 5-й | |
Дефекты труб | 17,5 | 18 |
Дефекты сварных швов (не заводских) | 21 | 20 |
Дефекты строительно-монтажные | 11 | 3,5 |
Коррозия | 40 | 50,5 |
Нарушение правил эксплуатации | 8,5 | 3 |
Другие причины | 8,5 | 3 |
Достаточно велика доля разрушений, связанных с различными дефектами (труб, сварных швов, СМР). Это также связано с невозможностью своевременно диагностировать аварийное состояние трубопровода. Анализ данных об авариях на линейной части нефтепроводов за 1983–2007 года отражен в таблице 1.3 [79].
Таблица 1.3 – Статистические данные об авариях на линейной части нефтепроводов за 1983–2007 г.г.
Категория | Кол-воаварий,шт. | Потеринефти, т. | Причины аварий, количество | ||||||
Почвеннаякоррозия | Некач. выполнениеСМР | Заводскойдефект | Механ. повреждение | Устал.разрушениеметалла | Наруш. правил работ в охран. зоне | Прочие | |||
I | 166 | 86242,0 | 21 | 47 | 55 | 10 | 15 | 4 | 14 |
II | 101 | 2567,1 | 16 | 24 | 22 | 15 | 5 | 5 | 14 |
III | 135 | 747,2 | 27 | 38 | 24 | 11 | 6 | 4 | 25 |
Некатег | 38 | 245,4 | 9 | 7 | 4 | 1 | 2 | 2 | 13 |
ВСЕГО | 440 | 89801,7 | 73 | 116 | 105 | 37 | 28 | 15 | 66 |
Первое и второе места по количеству занимают некачественное выполнение СМР и заводские дефекты. Высокий показатель именно этих причин обусловлен тем, что только в 1994 г. МНП были оснащены прибором "Ультраскан", которым можно определять различные дефекты труб, изоляционных покрытий.
За период с 1997 - 2007 гг. на нефтепроводах на территории РФ произошли ЧС, вызванные авариями с разливом нефти, по следующим причинам, приведенным на рисунке 1.9.
Рисунок 1.9 – Основные причины ЧС на МНП на территории РФ за период 1997-2007 гг.
Таким образом, для более полного описания чрезвычайной ситуации на объектах хранения и перекачки нефти, рассмотрим некоторые аварии на магистральных нефтепроводах, произошедшие в РФ за последние 2 года.
1.5 Анализ ЧС, возникших в результате аварий на магистральных нефтепроводах
Анализ ЧС, происшедших в результате аварий на магистральных нефтепроводах, необходим для того, чтобы выявлять сценарии возможных ЧС и особенности прогнозирования, предотвращения и ликвидации ЧС.
В настоящее время возникают ЧС, вызванные авариями на магистральных нефтепроводах, в ходе которых происходит утечка нефти, пожары и взрывы. Рассмотрим несколько подобных ЧС, происшедших на территории РФ за последнее время.
20 февраля 2005 года во время ремонтных работ ООО "Транссибнефть" в районе с. Старый Боготол Красноярского края произошел разлив нефти. В результате оказались загрязненными 45 земельных участков жителей села Старый Боготол и ручей Боготольчик.
22 января 2006 года в ОАО Уфимский НПЗ (топливное производство, установка ЭЛОУ-АВТ-6) был обнаружен очаг возгорания в районе блока теплообменников с последующим возникновением пожара. Через 3,5 часа пожар был ликвидирован. Эксплуатация установки приостановлена. Пострадавших нет [78].
7 февраля 2006 года - во время ремонтных работ на магистральном нефтепроводе "Нижневартовск - Курган - Куйбышев" под городом Миасс Челябинской области произошел разлив 10 т нефти. Начался пожар, который уничтожил передвижную насосную установку.
23 марта 2006 года на магистральном трубопроводе "Малгобек - Тихорецк" обнаружилась нелегальная врезка. Во время вспашки поля плугом был подрезан резиновый шланг, при помощи которого осуществлялись хищения. В результате произошел разлив 2 кубометров нефти.
13 марта 2007 года в официальной сводке МЧС РФ появилось сообщение о том, что в 9 утра 12.03.2007 на нефтепродуктопроводе "Нижний Новгород-Альметьевск" в районе Кстово (Нижегородская область) произошла авария с разливом около 50 т дизельного топлива. Причина аварии – неудовлетворительное техническое состояние [78].
31 июля 2007 года произошла ЧС на нефтепроводе в Мелеузовском районе Башкирии, в результате ремонтных работ, площадь загрязнения составила 250-300 кв. м грунта. По данным спасателей, в понедельник в 19:45 в 3 км западнее поселка Зирган произошел прорыв нефтепровода диаметром 300 миллиметров. В водоемы нефтепродукт не попал. Жертв и пострадавших нет [78].
Таким образом, из приведенных данных можно сделать вывод, что ЧС, вызванные авариями на магистральных нефтепроводах, случаются довольно часто и приводят к загрязнению окружающей среды нефтью, пожарам, взрывам, гибели людей, животных, а так же к значительному материальному ущербу. И поэтому возникает необходимость в разработке мероприятий по ликвидации последствий аварии в полном объеме в кратчайшие сроки. И так как невозможно точно определить, что же явится причиной возможного разрушения трубопровода, приведем статистические данные по ЧС, вызванным авариями на магистральных нефтепроводах.
1.6 Статистика ЧС, вызванных авариями на нефтепроводах
На несущую способность, а, следовательно, и надёжность магистральных нефтепроводов, влияет много различных факторов. Нельзя заранее точно предсказать, что явится причиной возможного разрушения нефтепровода, а значит, и определить их число и распределение во времени. В какой–то мере разрушение является случайным событием, и для оценки вероятности разрушения на том или ином трубопроводе или его участке необходимо использовать вероятностно – статистический подход. Общая ориентировочная оценка может быть определена по статистическому анализу аварий, имевших место в предыдущие годы [27]. В таблице 1.4 приведены данные о частоте отказов в год на 1000 км нефтепроводов.
Таблица 1.4 – Частота отказов (в %) в год на 1000 км
Вид трубопровода | Аварии | Годы эксплуатации | ||||||
1-й | 2-й | 3-й | 4-й | 5-й | 6-й | 7-й | ||
Нефтепроводы | крупные | 3,7 | 2,33 | 2,77 | 1,18 | 1,21 | 0,7 | 1,0 |
мелкие | 10,7 | 5,64 | 3,97 | 3,62 | 3,59 | 3,2 | 5,23 |
На основании данных таблицы 1.4 построены графики зависимости частоты отказов от года эксплуатации (рисунки 1.10, 1.11).
Рисунок 1.10 – График зависимости частоты отказов, влекущих крупные аварии, от года эксплуатации
Рисунок 1.11 - График зависимости частоты отказов, влекущих мелкие аварии, от года эксплуатации