Из графика, изображенного на рисунке 1.10 видно, что частота отказов с течением времени постепенно снижается. С учетом того, что анализируется достаточно короткий период времени, это вполне закономерно, так как в первые годы эксплуатации отказывают те участки МНП, где присутствует дефект (они обнаруживаются быстрее всего), ремонтные работы в первые годы ведутся не так активно, поэтому наблюдается убывающая зависимость.
График, изображенный на рисунке 1.11, что он является типовой графиком изменения интенсивности отказов с течением времени. Первые три года – участок приработки, проявляются отказы, вызванные нарушениями технологического процесса и производством работ; 4–6–й года – участок нормальной эксплуатации, 7–й и далее года – участок старения и износа.
Статистические данные об авариях на нефтепроводах за 1987–2007 годы в СССР и России (таблица 1.5) [27, 78].
Таблица 1.5 – Статистические данные об авариях на нефтепроводах за 1987–2007 годы
Год | Протяженность нефтепроводов, тыс. км | Число аварий | Число аварий, приведенное к 1000 км нефтепроводов |
1987 | 43,7 | 50 | 1,21 |
1988 | 45,7 | 31 | 0,71 |
1989 | 45,4 | 47 | 1,03 |
1990 | 48,0 | 25 | 0,52 |
1991 | 50,9 | 37 | 0,73 |
1992 | 54,2 | 23 | 0,42 |
1993 | 56,2 | 22 | 0,39 |
1994 | 56,6 | 18 | 0,32 |
1995 | 57,1 | 18 | 0,31 |
1996 | 59,5 | 16 | 0,27 |
1997 | 60,4 | 24 | 0,40 |
1998 | 62,2 | 27 | 0,43 |
1999 | 64,2 | 24 | 0,37 |
2000 | 64,1 | 16 | 0,25 |
2001 | 65,9 | 25 | 0,38 |
2002 | 66,3 | 17 | 0,26 |
2003 | 66,7 | 17 | 0,25 |
2004 | 49,7 | 10 | 0,20 |
2005 | 49,7 | 10 | 0,20 |
2006 | 49,7 | 12 | 0,24 |
2007 | 49,6 | 12 | 0,24 |
Частота возникновения аварий на линейной части магистральных нефтепроводов за период эксплуатации имеет следующие количественные значения:
– частота возникновения аварий на линейной части магистральных нефтепроводов в России равна 2,98×10-4 событий×км-1×год –1;
– частота возникновения аварий на линейной части магистральных нефтепроводов в Западной Европе равна 1,92×10-4 событий × км-1 × год –1.
Среднее значение приведенных выше частот возникновения аварий на линейной части магистральных нефтепроводов 2,45×10-4 событий×км-1 × год–1.
Кроме того, имеются сведения о частоте отказов нефтепроводов в зависимости от характера отказа или повреждения (таблица 1.6).
Таблица 1.6 – Частота отказов в зависимости от характера отказа нефтепровода
Характер отказа нефтепровода | Частота отказов, событий×км-1×год –1 |
Коррозионный отказ. Одиночный коррозионный сквозной дефект с эквивалентным диаметром 2 дюйма | 2,4×10-4 |
Структурный отказ. Усталостная трещина в стенке трубопровода с эквивалентным диаметром 12 дюймов | 6,0×10-5 |
"Гильотинный" разрыв. Разрыв трубы на полное сечение в результате внешних воздействий | 6,12×10-5 |
Таким образом, анализ статистических данных дает сведения о частоте отказов нефтепроводов и вероятности возникновения ЧС, негативные последствия которых возможно снизить за счет превентивных мероприятий.
1.7 Превентивные мероприятия, проводимые в режимах повседневной деятельности и повышенной готовности на магистральных нефтепроводах
Предупреждение аварий с разливов нефти достигается комплексом превентивных мероприятий, а именно:
- создание собственных формирований (подразделений) для ликвидации разливов нефти и нефтепродуктов, проведение аттестации указанных формирований в соответствии с законодательством Российской Федерации, оснащение их специальными техническими средствами или заключение договоров с профессиональными аварийно-спасательными формированиями (службами);
- создание резервов финансовых средств и материально-технических ресурсов для локализации и ликвидации разливов нефти и нефтепродуктов;
- обучение работников способам защиты и действиям в чрезвычайных ситуациях, связанных с разливами нефти и нефтепродуктов;
- разработка декларации промышленной безопасности опасных производственных объектов [78];
- организация и осуществление производственного контроля за соблюдением требований промышленной безопасности на опасном производственном объекте;
- проведение корректировки планов при изменении исходных данных;
- создание и поддержание в готовности системы обнаружения разливов нефти и нефтепродуктов, а также системы связи и оповещения [78];
- проверка работоспособности автоматических систем обнаружения и оповещения о возникновении аварии на объектах;
- контроль на объекте за выполнением правил противопожарной безопасности;
- защита персонала и населения: организация системы оповещения о возникновении ЧС, обеспечение персонала индивидуальными средствами защиты, планирование проведения эвакуации;
- подготовка к привлечению при необходимости дополнительных сил и средств в соответствии с планом взаимодействия [27].
Так же для предупреждения ЧС, вызванных авариями на магистральных нефтепроводах необходимо выполнение графиков планово - предупредительного ремонта механо-технологического и энергетического оборудования и средств автоматизации и телемеханизации, обеспечение готовности технических средств, применяемых при ликвидации возможных ЧС, обеспечение готовности ремонтного персонала [78].
Для обеспечения нормальной эксплуатации трубопровода требуется целый комплекс научно-технического и аппаратно-программного обеспечения. Рассмотрим основные методы обеспечения безопасности эксплуатации магистральных нефтепроводов.
1.7.1 Информационно-экспертная система безопасной эксплуатации нефтепровода
С появлением специфических программных продуктов геоинформационных систем (ГИС) появилась возможность анализа надежности работы и управления эксплуатацией таких пространственно распределенных объектов, к которым относятся нефтепроводы, на единой графической основе [25].
Опыт внедрения ГИС технологий позволяет утверждать, что информационно-экспертная система безопасной эксплуатации нефтепроводов осуществляет следующие функции.
1) Функции сбора и накопления информации:
- накопление информации об эксплуатируемой аппаратуре нефтепровода и эксплуатационных характеристиках (тип, марка, год сдачи в эксплуатацию, паспортные данные, завод изготовитель, технологические схемы, наработка, число и виды отказов, средств электрохимической защиты, катодной защиты и др.);
- накопление информации о сроке, типе и содержании технического обслуживания и планово-предупредительных ремонтах;
- накопление информации о дефектах (характеристики, развитие, степень опасности, место расположения и др.);
- описание условий прокладки и залегания трубопровода (картографическая, геодезическая, геодинамическая, геоморфологическая, геологическая, экологическая и другая информация, характеризующая трассу нефтепровода);
- точное определение местоположения на цифровой карте и на местности дефектов, характерных точек трубы, характеристик трассы нефтепровода.
2) Функции отчетности:
- формирование отчетов по установленной нормативными документами форме о работе отдельных агрегатов и узлов, составляющих трубопроводную геотехническую систему;
- формирование электронных и бумажных вариантов Паспорта нефтепровода, Технологического регламента. Отчета об охране окружающей среды и других необходимых технологических документов с автоматизацией соответствующих расчетов;
- формирование бумажных проектов и смет на ремонт отдельных участков, агрегатов и узлов нефтепровода, графиков, таблиц и справок для руководящего состава организации [25].
3) Функции экспертной системы как системы оценки надежности и принятия решений:
- сбор и представление данных о всех видах диагностики трубопроводной системы;
- расчеты долговечности трубопровода при наличии на них дефектов в виде коррозии, расслоений, вмятин, гофр и др.;
- расчеты критических размеров дефектов, при достижении которых линейные участки необходимо ремонтировать или заменять;
- обобщение и анализ поступающей в систему информации о работе нефтепровода и изменениях на земной поверхности в его районе;
- разработка комплексов алгоритмов и программ по расчетам характеристик работы трубопроводной геотехнической системы (гидравлических характеристик, остаточного ресурса и др.)
4) Функции экономического и геоэкологического анализа:
- разработка алгоритмов и программ расчета экологического ущерба от возникновения возможных аварий: оценка риска возникновения аварий и чрезвычайных ситуаций на нефтепроводе;
- разработка алгоритмов и программ расчета стоимости замены трубы на отдельных участках нефтепровода и стоимости ремонтно-восстановительных работ;
- расчеты необходимого количества электроэнергии для обеспечения надежной работы нефтепровода;
- расчеты, связанные с ведением земельного кадастра и с определением экономических показателей [25].
Применение геоинформационных систем и совмещение данных аппаратной диагностики имеет важное значение в формировании безопасности на магистральном нефтепроводе.
1.7.2 Спутниковый мониторинг трубопроводов и технология мониторинга геотехнических систем
В последние годы используется спутниковый мониторинг за коррозионным состоянием трубопроводов, в частности нефтепроводов ("EnbridgePipelineInc" США) [38]. Их использование особенно эффективно для коррозионного мониторинга удаленных и труднодоступных участков. Для мониторинга используются спутники, находящихся на низкой орбите. На наиболее вероятные, с точки зрения коррозионной активности, участки трассы накладывается специальная пленка, реагирующая на поступление к ней водорода в случае усиления коррозии. Изменение цвета фиксируется расположенными на земле специальными датчиками, а соответствующие сигналы передаются к спутникам, через которые поступают в главный офис компании.