Для контроля утечек применяются такие методы, как наблюдение с воздуха или обход линии, сообщения случайных очевидцев, мониторинг условий эксплуатации трубопроводов с использованием "интеллектуальной" технологии и другие; все они характеризуют той или иной степенью достоверности. Наилучший результат в определении утечек дает оптимальное сочетание этих методов [38]. Расчетный метод мониторинга утечек из трубопровода характеризуется различной сложностью в зависимости от сложности трубопроводной системы.
Мониторинг состоит из двух блоков: оперативного контроля за состояние и управления состоянием геотехнических систем. Организационно мониторинг представляется по схеме: статистика – динамика – прогноз. Он реализуется через три этапа: паспортизация объектов, стационарные исследования, моделирование и прогноз функционирования геотехнических систем при различных режимах и эксплуатации. В процессе паспортизации устанавливаются типы возможных дискомфортных ситуаций, причины и факторы, способные их вызвать, формы и масштабы проявления [66].
На втором этапе мониторинга осуществляются режимные исследования на участках прогнозируемых дискомфортных ситуаций. В их пределах осуществляется: ежегодные аэровизуальные обследования, аэрофотосъемки, тепловые инфракрасные аэросъемки, комплексные исследования. На третьем этапе осуществляется картографическое и математическое моделирование состояния и прогноз функционирования геотехнических систем при различных режимах её эксплуатации [66].
1.7.3 Система комплексного анализа надежности линейной части нефтепровода
Для предотвращения аварий на магистральных нефтепроводах и осуществления ремонтов осуществляется комплексный подход к получению, систематизации и анализу всей совокупности данных о состоянии нефтепровода: дефектах, предыдущих ремонтах, данных анализа аварий. Актуальным остается задача разработки общей методологии и создания базовой системы и анализа диагностической информации, учитывающий комплексный многофакторный характер данных о состоянии магистрального нефтепровода: данных внутритрубной диагностики инспекционными снарядами, об авариях и ремонтах, лабораторных и натуральных испытаний [1].
Оптимальный вариант диагностической системы в целом сочетает:
- средства эффективного анализа совокупности данных о состоянии магистрального нефтепровода;
- результаты комплексного материаловедческого исследования различных внешних и внутренних факторов (условий эксплуатации, степени и характера дефектности труб и сварных швов, структурного состояния металла труб);
- комплексное моделирования кинетики развития процессов разрушения линейной части магистрального нефтепровода, обеспечивающую возможность прогнозирования долговечности локальных участков нефтепровода [1].
На рисунке 1.12 приведена схема взаимосвязанного функционирования систем диагностирования и прогнозирования.
Рисунок 1.12 - Блок-схема взаимосвязанного функционирования систем диагностирования и прогнозирования
Прогнозирование аварий тесно взаимодействует с оценкой надежности. Актуальной является задача оценки эффективности трубопроводных систем с учетом конструктивно-технологических и эксплуатационных аспектов с позиций оценки показателей надежности и безопасности.
1.7.4 Надежность и безопасность нефтепроводов с технологическими и эксплуатационными повреждениями
Проблема надежности и безопасности нефтепроводов имеет комплексный характер и связана с поиском оптимальных решений экономических и инженерных задач.
Формально нефтепровод рассматривается как система из последовательно соединенных элементов труб. Надежность такой системы ограничена в пространстве и времени. Ограничения в пространстве связаны с действием масштабного фактора. Чем больше диаметр нефтепровода и чем больше его протяженность, тем выше вероятность появления критических дефектов или повреждений, способных привести к катастрофическому разрушению. Ограничения во времени связаны с неизбежным накоплением повреждений в металле труб [3]. Указанные ограничения отчетливо проявляются в статистических оценках надежности (рисунок 1.13).
Рисунок 1.13 - Статистические оценки функции надежности нефтепроводов в зависимости от их диаметра и срока эксплуатации
Как видно из представленных данных даже при небольших сроках эксплуатации нефтепроводы имеют недопустимо низкие показатели надежности. Анализ возможностей повышения надежности нефтепроводов за счет конструктивно-технологических факторов показывает, что теоретическая надежность нефтепровода равна произведению надежностей элементов [1, 3].
По данным статистического анализа дефектности сварных соединений нефтепроводов расчетная надежность нефтепровода диаметром 500 мм протяженностью 1000 км (без учета накопления повреждений) составляет 0,6-0,98. Для нефтепроводов с диаметром выше 720 мм эти значения оказываются еще ниже – 0,3-0,95. Повысить надежность нефтепроводов за счет дальнейших конструктивно-технологических ограничений дефектов и повреждений крайне сложно.
Рисунок 1.14 - Схема определения нормативной надежности, эффективной протяженности, и безопасного ресурса трубопровода
Учитывая эти обстоятельства, безопасность нефтепроводов повышается за счет ограничений масштабного фактора (диаметра, протяженности) или времени эксплуатации. На рисунке 1.14 приведена схема определения ограничений масштабного фактора. Для этого вводится комплексный показатель эффективности нефтепровода в процессе эксплуатации. В его структуре могут содержаться технико-экономические и стоимостные параметры затрат и доходов. На первой стадии при увеличении масштабного фактора эффективность нефтепровода возрастает за счет расширения числа потребителей и передачи большего числа продукта. В последствии начинается неизбежное снижение эффективности из-за возрастания потерь от аварий, затрат на диагностику и проведения ремонтных операций. Точка максимума эффективности определяет предельный уровень надежности нефтепровода и его оптимальные, с точки зрения безопасности, параметры: диаметр и протяженность. Протяженность служит основным ограничителем, а диаметр дополнительным. При уменьшении диаметра может быть увеличена допустимая протяженность нефтепровода.
Ограничения по времени носят соподчиненный характер. Они определяют безопасный ресурс нефтепровода. В качестве критерия здесь выступает нормативный уровень надежности, определяемый масштабным фактором. Надежность нефтепровода в процессе эксплуатации на любом отрезке времени не допускается ниже этой нормы. Исходя из этого, получается допустимый ресурс. Эксплуатация нефтепровода за пределами ресурса без проведения полной диагностики и необходимой реконструкции считается недопустимой [38].
Изложенная схема дает основания для системного решения экономических и инженерных задач безопасной эксплуатации нефтепроводных систем. Ограничения по протяженности, диаметру и времени эксплуатации нефтепровода являются неизбежными и объективно обусловленными. Расширение этих ограничений осуществляется только на базе принципиально иных конструктивно-технологических схем нефтепроводов.
Так же для обеспечения экологической и промышленной безопасности магистрального нефтепровода необходимо внедрение новых технологий. С этой целью проведем анализ патентной литературы в области технической диагностики состояния трубопроводов.
1.8 Анализ патентной литературы в области технической диагностики состояния трубопроводов
Одной из важнейших проблем трубопроводного транспорта является сохранение нормального состояния линейной части магистральных трубопроводов, т.е. заблаговременное нахождение дефекта на трубопроводе и устранение его. Совершенно очевидно, что вскрытие трубопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность трубопровода. Поэтому появляется необходимость в диагностике трубопровода без его вскрытия и остановки перекачки. Эта проблема решается с помощью технической диагностики.
Целью технической диагностики являются определение возможности и условий дальнейшей эксплуатации диагностируемого оборудования и в конечном итоге повышение промышленной и экологической безопасности [37].
Задачами технической диагностики, которые необходимо решить для достижения поставленной цели, являются:
-обнаружение дефектов и несоответствий, установление причин их появления и на этой основе определение технического состояния трубопровода;
-прогнозирование технического состояния и остаточного ресурса (определение с заданной вероятностью интервала времени, в течение которого сохранится работоспособное состояние трубопровода).
В настоящее время используются запатентованные способы диагностики состояния трубопроводов, приведенные в таблице 1.7.
Таблица 1.7 - Запатентованные способы диагностики состояния трубопроводов
Название патента | № и дата публикации | Индекс МПК | Описание способов и методов |
Способ и устройство акустической диагностики сварных швов трубопроводов | № 2325637,27.05.2008г | G01N29/04 | Осуществляется ударное возбуждение акустических затухающих колебаний в расположенных вдоль сварного шва участков (зон) и последующая регистрация этих колебаний преобразователем с последующей обработкой данных в компьютере. |
Способ диагностики состояния магистрального трубопровода | № 2318203,27.02.2008 г. | G01N23/18 | Стенку трубопровода изнутри облучают пучком рентгеновского излучения с панорамной геометрией относительно оси источника рентгеновского излучения, используя рентгеночувствительные элементы первой и второй группы, при этом предварительно на бездефектном участке трубопровода многоэлементный преобразователь устанавливают в рабочее положение ось источника рентгеновского излучения и ось трубопровода, а в фиксированных положениях источника рентгеновского излучения измеряют разность сигналов между каждой из N пар рентгеночувствительных элементов первой и второй групп, имеющих одинаковый порядковый номер n=1, 2, 3, ..., N, причем о наличии и месте дефекта судят соответственно по величине и знаку измеряемых разностных сигналов [37]. |
Способ прогнозирова-ния аварийного технического состояния трубопровода | № 2286558,27.10.2006 г. | G01N17/02 | Вблизи трубопровода устанавливают датчик скорости коррозии (ДСК) и периодически снимают его текущие показания. Затем показания с ДСК сравнивают с соответствующим пороговым значением. После чего суммируют за определенный период времени показания ДСК и сравнивают суммарные значения со вторым пороговым значением. При превышении полученными сигналами хотя бы одного из пороговых значений прогнозируют аварийное состояние трубопровода |
Система внутритрубной диагностики трубопровода | № 2279652,10.07.2006 г. | G01M3/28 | Система внутритрубной диагностики трубопровода выполняется в виде снаряда батитермографа, представляющего собой герметичную капсулу с ведущими манжетами из мягкой резины с преобразователями продольной координаты, и аппаратуры отложенной обработки [37]. Технический результат: определение высотного положения трубопровода, контроль за температурой и гидростатическим давлением, создаваемыми в трубе, определение сопротивления трению, измерение падения давления по длине трубопровода и определение мест утечек из трубы через свищи и трещины [37]. |
Устройство для автоматизиро-ванной диагностики трубопроводов | № 2251049,27.04.2005 г. | F17D5/00 | Устройство включает в себя корпус, диагностическую аппаратуру, турбину, предохранительный механизм, электрогенератор и аккумуляторную батарею. Техническим результатом изобретения является повышение надежности заявленного устройства за счет применения предохранительного механизма, который предотвращает выход устройства из строя, например, в случае его остановки (застревания) в трубопроводе. |
Измеритель параметров коррозии | № 2225594,10.30.2004 г. | G01D9/00 | Прибор содержит датчик-зонд, блок предварительной обработки сигналов, многоканальный аналого-цифровой преобразователь, микропроцессор, энергонезависимый модуль памяти, жидкокристаллический дисплей, клавиатуру, часы реального времени, нагревательный элемент и датчик температуры. Техническим результатом данного технического решения является расширение функциональных возможностей прибора и увеличение температурного диапазона, при котором может работать прибор [37]. |
Способ путевого обследования и диагностики действующих магистральных нефтепроводов и система для его осуществления | № 2228487,10.05.2004 г | F17D5/00 | Способ заключается в телеинспекции обследуемого объекта, при этом система включает видеокамеру типа VB21C-R36 или KPC-190SW с углом обзора 92 градуса, галогеновые источники света мощностью 5-10 Вт, цифровую записывающую видеокамеру типа DCR-TRV17E Sony с монитором 3,5 дюйма или ей подобную, горизонтальную платформу толщиной 80 мм, выполненную из брусков хвойных пород дерева, пропитанных в кипящем индустриальном масле, барабан с трехжильным питающим кабелем,имеющим двойную изоляцию, поплавки и знаки длины пройденного расстояния, направляющий ролик для кабеля и независимый источник постоянного тока напряжением 12 вольт. Техническим результатом изобретения является оперативное обследование трубопровода[37]. |
Способ диагностики состояния магистральны трубопроводов с использованием радиоактивных индикаторов | № 2159930,27.11.2000 г. | G01N23/00 | Способ включает перемещение внутри трубопровода снаряда-дефектоскопа, регистрацию его перемещения и излучения радиоактивных индикаторов. В качестве радиоактивных индикаторов используют содержащиеся в транспортируемом продукте природные радионуклиды и радиоактивные продукты их распада, накопившиеся в стенке трубопровода и прилегающем к внешней поверхности трубопровода грунте за время эксплуатации трубопровода. Характер дефекта определяют, сравнивая уровень гамма-излучения короткоживущих изотопов с суммарным уровнем гамма-излучения или/и с уровнем низкоэнергетического гамма-излучения на выделенном участке стенки трубопровода. |
Способ акустико-эмиссионной диагностики трубопроводов | № 2057332,27.03.1996 г. | G01N29/14 | Способ заключается в перемещении диагностической системы по трубопроводу под действием протекающей жидкости, регистрации акустического излучения от течи, создании волны локальных напряжений стенок трубопровода в области диагностической системы по мере ее продвижения, дополнительной регистрации возникающих при этом сигналов акустической эмиссии[37]. |
Внутритрубный многоканальный профилемер | № 2164661,27.03.2001 г. | G01B5/28 | На корпусе профилемера закреплен пояс чувствительных рычагов, прижимаемых к внутренней поверхности трубопровода. В корпусе размещены средства обработки и хранения измеренных данных, одометрическая система и электромагнитный маркерный передатчик для определения положения дефектоскопа внутри трубопровода. |
Все рассмотренные запатентованные способы диагностики состояния магистральных трубопроводов способны повысить экологическую и промышленную безопасность [37].