- масса поднимаемого и перемещаемого груза вручную;
- расстояние перемещения груза;
- мощность выполняемой работы: при работе с участием мышц нижних конечностей и туловища, с преимущественным участием мышц плечевого пояса;
- мелкие, стереотипные движения кистей и пальцев рук, количество за смену;
- перемещение в пространстве (переходы, обусловленные технологическим процессом), км.
Показатели статической нагрузки:
- масса удерживаемого груза, кг;
- продолжительность удерживания груза, с;
- статическая нагрузка за рабочую смену, Н, при удержании груза: одной рукой, двумя руками, с участием мышц корпуса и ног;
- рабочая поза, нахождение в наклонном положении, процент сменного времени;
- вынужденные наклоны корпуса более 30°, количество за смену;
- линейный пространственный компоновочный параметр элементов производственного оборудования и рабочего места, мм;
- угловой пространственно-компоновочный параметр элементов производственного оборудования и рабочего места, угол обзора;
- значение сопротивления приводных элементов органов управления (усилие, необходимое для перемещения органов управления), Н.
Динамическую физическую нагрузку определяют, как правило, одним из следующих показателей:
1) работой (кг«м);
2) мощностью усилия (Вт); статическую физическую нагрузку определяют в кг/с.
Для определения динамической работы, выполняемой человеком в каждом отдельном отрезке рабочей смены, рекомендуется пользоваться следующей формулой:
W= (РН + (PL/9) + РН1/2))К, (3)
где W— работа, кг м; Р — масса груза, кг; Н — высота, на которую помещают груз из исходного положения, м; L —расстояние, на которое перемещают груз по горизонтали, м; Н1 —расстояние, на которое опускают груз, м; К — коэффициент, равный 6. Для расчета среднесменной мощности следует суммировать работу, произведенную человеком за всю смену, и разделить ее на длительность смены:
N= WK1/t, (4)
где N— мощность, Вт, t — длительность смены, с; K1 — коэффициент перевода работы (W) из кг×м в Джоуль (Дж), равный 9,8.
Статическая нагрузка — это усилия на мышцы человека без перемещения тела или его отдельных частей. Величина статической нагрузки определяется произведением величины усилия на время поддержания (в случае различных величин усилий время поддержания каждого из них определяют отдельно, находят произведения величины усилия на время поддержания и затем эти произведения суммируют). При оценке напряженности умственного труда используют показатели внимания, напряженности зрительной работы и слуха, монотонности труда.
Общие характеристики анализаторов. Целесообразная и безопасная деятельность человека основывается на постоянном приеме и анализе информации о характеристиках внешней среды и внутренних системах организма. Этот процесс осуществляется с помощью анализаторов — подсистем центральной нервной системы (ЦНС), обеспечивающих прием и первичный анализ информационных сигналов. Информация, поступающая через анализаторы, называется сенсорной (от лат. sensus — чувство, ощущение), а процесс ее приема и первичной переработки — сенсорным восприятием.
Рисунок 2. Функциональная схема анализатора
Общая функциональная схема анализатора представлена на рисунке 2. Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть — рецепторы — находится на поверхности тела для приема внешней информации либо размещена во внутренних системах и органах для восприятия информации об их состоянии (внешние рецепторы в обычной речи называют органами чувств). Проводящие нервные пути соединяют рецепторы с соответствующими зонами мозга. В зависимости от специфики принимаемых сигналов различают следующие анализаторы: Внешние — зрительный (рецептор — глаз); слуховой (рецептор — ухо); тактильный, болевой, температурный (рецепторы кожи); обонятельный (рецептор в носовой полости); вкусовой (рецепторы на поверхности языка и неба). Внутренние — анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела. Рассмотрим основные параметры анализаторов:
1. Абсолютная чувствительность к интенсивности сигнала (абсолютный порог ощущения по интенсивности) — характеризуется минимальным значением воздействующего раздражителя, при котором возникает ощущение. В зависимости от вида раздражителя абсолютный порог измеряется в единицах энергии, давления, температуры, количества или концентрации вещества и т.п. Минимальную адекватно ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности. Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Интенсивность ощущений Е выражается логарифмической зависимостью (закон Вебера-Фехнера)
(5)где J— интенсивность раздражителя; K и С — константы, определяемые данной сенсорной системой.
2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу). Максимальную адекватно ощущаемую величину сигнала принято называть верхним порогом чувствительности.
3. Диапазон чувствительности к интенсивности — включает все переходные значения раздражителя от абсолютного порога чувствительности до болевого порога.
4. Дифференциальная (различительная) чувствительность к изменению интенсивности сигнала — это минимальное изменение интенсивности сигнала, ощущаемое человеком. Различают абсолютные дифференциальные пороги, характеризуемые значением
, и относительные, выражаемые в процентах: , где J — исходная интенсивность.5. Дифференциальная (различительная) чувствительность к изменению частоты сигнала — это минимальное изменение частоты F сигнала, ощущаемое человеком. Измеряется аналогично дифференциальному порогу по интенсивности, либо в абсолютных единицах
, либо в относительных — .6. Границы (диапазон) спектральной чувствительности (абсолютные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги.
7. Пространственные характеристики чувствительности специфичны для каждого анализатора.
8. Для каждого анализатора характерна минимальная длительность сигнала, необходимая для возникновения ощущений. Время, проходящее от начала воздействия раздражителя до появления ответного действия на сигнал (сенсомоторная реакция), называют латентным периодом.
Величина латентного периода (с) для различных анализаторов следующая:
тактильный (прикосновение)...………………………. 0,09...0,22
слуховой (звук)..........…………………………………. 0,12...0,18
зрительный (свет).........……………………………….. 0,15...0,22
обонятельный (запах).......…………………………….. 0,31...0,39
температурный (тепло-холод)...……………………… 0,28...1,6
вестибулярный аппарат (при вращении)…………….. 0,4
болевой (рана)…………………………………………. 0,13...0,89
9. Адаптация (привыкание) и сенсибилизация (повышение чувствительности) — характеризуются временем и присущи каждому типу анализаторов.
Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низке и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени, и ее недостаток, утомление, вызванное длительной работой или неблагоприятными условиями, состояние стресса — все эти факторы вызывают различные изменения характеристик анализаторов.
Рисунок. 3 Спектральная чувствительность глаза
Чтобы обеспечить достаточную надежность деятельности человека при приеме и анализе сигналов в любых условиях, для практических расчетов рекомендуется использовать не абсолютные и дифференциальные пороги чувствительности анализаторов к различным характеристикам сигналов, а оперативные пороги, характеризующие не минимальную, а некоторую оптимальную различимость сигналов. Обычно оперативный порог в 10-15 раз выше соответствующего абсолютного и дифференциального. Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анализатор. Прием и анализ информации происходит в световом диапазоне (380—760 нм) электромагнитных волн. Цветовые ощущения вызываются действием световых волн, имеющих различную длину. Приблизительные границы длин и соответствующие им ощущения показаны на рис.3. Глаз различает семь основных цветов и более сотни их оттенков. Наибольшая чувствительность в условиях обычного дневного освещения (В = 9,56 кд/м2) достигается при длине волн 554 нм (в желто-зеленой части спектра) и убывает в обе стороны от этого значения. Характеристикой чувствительности является относительная видность —
, где — ощущение, вызываемое источником излучения с длиной волны 554 нм; Sl — ощущение, вызываемое источником той же мощности с длиной волны l. Полный диапазон световой чувствительности 3×10-8-2,25×105 кд/м2. Абсолютная слепящая яркость наступает при 225 000 кд/м2. Эффект ослепления может наступить и при меньших яркостях, если скорость нового объекта, попавшего в поле зрения, превысит яркость того объекта, на которую адаптирован глаз. Минимальная интенсивность светового воздействия, вызывающая ощущение света, называется порогом световой чувствительности. В качестве меры интенсивности принимается яркость воспринимаемого объекта в канделах на квадратный метр (кд/м2). В случае восприятия объектов, светящихся отраженным светом, яркость рассчитывают по формуле В= rЕ, где r — коэффициент отражения поверхности; Е — освещенность, лк. Порог световой чувствительности изменяется в широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию. Наиболее высокая чувствительность, достигаемая в ходе темновой адаптации в течение нескольких (до 3—4) часов, представляет собой абсолютный порог световой чувствительности. Различие предмета на фоне других определяется контрастом его с фоном. Для практических целей используется показатель, именуемый порогом контрастной чувствительности. Величина контраста оценивается количественно, как отношение разности яркости (кд/м2) предмета и фона к большей яркости: