Смекни!
smekni.com

Влияние состояния здравоохранения и транспортной обеспеченности на (стр. 3 из 6)

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 505,498 6 84,2497 1098,39 0,0228

Остаток 0,0767031 1 0,0767031

-----------------------------------------------------------------------------

Общее кол. 505,575 7

R2 (коэффициент детерминации) = 99,9848 %

R2 (приспособленный к числу значений) = 99,8938 %

Стандартная ошибка оценки = 0,276953

Средняя абсолютнаяошибка = 0,0724306


Уравнение регрессионной модели:

y3 = 11,1768 - 0,191681*x2 + 0,0440065*x1 + 0,0361766*x3 +

+ 0,0000281208*x4 - 0,00000402137*x5 + 0,606653*x6

у4 – Смертность на 1000 человек

Стандартная T р-

Параметр Оценка ошибка критерий значение

-----------------------------------------------------------------------------

Постоянная 5,46707 0,830794 6,58054 0,0960

x2 0,0787761 0,00400754 19,657 0,0324

x1 0,0111729 0,00502547 2,22325 0,2691

x3 -0,0155568 0,00169709 -9,16674 0,0692

x4 0,000232669 0,0000134616 17,2839 0,0368

x5 -0,0000055904 3,70512E-7 -15,0883 0,0421

x6 -0,0626762 0,0235323 -2,66341 0,2287

-----------------------------------------------------------------------------

Дисперсионный анализ

-----------------------------------------------------------------------------

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 47,8914 6 7,98191 461,21 0,0352

Остаток 0,0173064 1 0,0173064

-----------------------------------------------------------------------------

Общее кол. 47,9088 7

R2 (коэффициент детерминации) = 99,9639 %

R2 (приспособленный к числу значений) = 99,7471 %

Стандартная ошибка оценки = 0,131554

Средняя абсолютнаяошибка = 0,0344048

Уравнение регрессионной модели:


y4 = 5,46707 + 0,0787761*x2 + 0,0111729*x1 - 0,0155568*x3 + 0,000232669*x4 - 0,0000055904*x5 - 0,0626762*x6

у5 – коэффициент естественного прироста на 1000 человек

Стандартная T р-

Параметр Оценка ошибка критерий значение

-----------------------------------------------------------------------------

Постоянная 6,11292 2,52953 2,41662 0,2498

x2 -0,269378 0,0122018 -22,0769 0,0288

x1 0,0294256 0,0153011 1,9231 0,3053

x3 0,0521545 0,00516716 10,0935 0,0629

x4 -0,000202351 0,0000409867 -4,93699 0,1272

x5 0,00000154164 0,0000011281 1,36658 0,4022

x6 0,660049 0,0716492 9,21223 0,0688

-----------------------------------------------------------------------------

Дисперсионный анализ

-----------------------------------------------------------------------------

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 838,498 6 139,75 871,07 0,0256

Остаток 0,160435 1 0,160435

-----------------------------------------------------------------------------

Общее кол. 838,659 7

R2 (коэффициент детерминации) = 99,9809 %

R2 (приспособленный к числу значений) = 99,8661 %

Стандартная ошибка оценки = 0,400543

Средняя абсолютнаяошибка = 0,104753

Уравнение приспособленной модели:

y5 = 6,11292 - 0,269378*x2 + 0,0294256*x1 + 0,0521545*x3 – 0,000202351*x4 + 0,00000154164*x5 + 0,660049*x6

у6 – уровень рождаемости

Стандартная T р-

Параметр Оценка ошибка критерий значение

-----------------------------------------------------------------------------

Постоянная 0,352785 0,161948 2,17838 0,2740

x2 -0,0193954 0,000781198 -24,8278 0,0256

x1 0,0121752 0,000979625 12,4284 0,0511

x3 0,00371783 0,000330818 11,2383 0,0565

x4 0,00000811489 0,0000026241 3,09245 0,1991

x5 -6,31109E-7 7,22246E-8 -8,73814 0,0725

x6 0,0425779 0,00458721 9,28189 0,0683

-----------------------------------------------------------------------------

Дисперсионный анализ

-----------------------------------------------------------------------------

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 2,71434 6 0,45239 687,92 0,0288

Остаток 0,000657617 1 0,000657617

-----------------------------------------------------------------------------

Общее кол. 2,715 7

R2 (коэффициент детерминации) = 99,9758 %

R2 (приспособленный к числу значений) = 99,8304 %

Стандартная ошибка оценки = 0,025644

Средняя абсолютнаяошибка = 0,00670659

Уравнение регрессионной модели:

y6 = 0,352785 - 0,0193954*x2 + 0,0121752*x1 + 0,00371783*x3 + 0,00000811489*x4 - 6,31109E-7*x5 + 0,0425779*x6


у7 – уровень детской смертности

Стандартная T р-

Параметр Оценка ошибка критерий значение

-----------------------------------------------------------------------------

Постоянная 40,8464 40,1822 1,01653 0,4948

x2 -0,461165 0,193829 -2,37924 0,2533

x1 0,0250685 0,243062 0,103136 0,9346

x3 0,166108 0,0820816 2,0237 0,2922

x4 -0,000308391 0,000651084 -0,473657 0,7184

x5 0,00000562441 0,0000179202 0,31386 0,8064

x6 -0,582212 1,13816 -0,511536 0,6990

-----------------------------------------------------------------------------

Дисперсионный анализ

-----------------------------------------------------------------------------

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 1403,02 6 233,836 5,78 0,3039

Остаток 40,4843 1 40,4843

-----------------------------------------------------------------------------

Общее кол. 1443,5 7

R2 (коэффициент детерминации) = 97,1954 %

R2 (приспособленный к числу значений) = 80,3679 %

Стандартная ошибка оценки = 6,36272

Средняя абсолютнаяошибка = 1,66402

Уравнение регрессионной модели:

y7 = 40,8464 - 0,461165*x2 + 0,0250685*x1 + 0,166108*x3 – 0,000308391*x4 + 0,00000562441*x5 - 0,582212*x6

у8 – смертность детей до 5 лет на 1000 рожденных

Стандартная T р-

Параметр Оценка ошибка критерий значение

-----------------------------------------------------------------------------

Постоянная 366,892 81,0421 4,52718 0,1384

x2 -0,735043 0,390927 -1,88026 0,3112

x1 -1,49102 0,490223 -3,04151 0,2022

x3 0,248001 0,165548 1,49807 0,3747

x4 -0,00223802 0,00131315 -1,70432 0,3378

x5 0,0000643646 0,0000361426 1,78085 0,3257

x6 -5,0967 2,29553 -2,22027 0,2694

-----------------------------------------------------------------------------

Дисперсионный анализ

-----------------------------------------------------------------------------

Источник Сумма ЧислоСреднее F- р-

квадратовзначений квадратов критерий значение

-----------------------------------------------------------------------------

Модель 6645,32 6 1107,55 6,73 0,2830

Остаток 164,68 1 164,68

-----------------------------------------------------------------------------

Общее кол. 6810,0 7

R2 (коэффициент детерминации) = 97,5818 %

R2 (приспособленный к числу значений) = 83,0725 %

Стандартная ошибка оценки = 12,8328

Средняя абсолютнаяошибка = 3,35611

Уравнение регрессионной модели:

y8 = 366,892 - 0,735043*x2 - 1,49102*x1 + 0,248001*x3 - 0,00223802*x4 + 0,0000643646*x5 - 5,0967*x6

Результаты анализа многократной регрессии:


Переменные, ранжированные в порядке увеличения р-значения

№п/п Переменная р-значение
1 у3 0,0228
2 у5 0,0256
3 у6 0,0288
4 у4 0,0352
5 у2 0,1114
6 у8 0,2830
7 у7 0,3039
8 у1 0,4954

Т.к. р-значение переменной у3 наименьшее, то переменная у3 (рождаемость на 1000 человек) является наиболее зависимой от 6 независимых переменных.

Т.к. р-значение переменных у3, у4, у5, у6 меньше 0,05, то модели многократной регрессии, соответствующие этим переменным можно считать достаточно значимыми.

2.4 Анализ простой регрессии

В данном разделе приведены результаты приспособления моделей для описания отношений между переменными и уравнения регрессионных моделей.

R2 (Коэффициент детерминации) показывает, на сколько процентов модель объясняет зависимость между переменными.

Коэффициент корреляции указывает на силу отношений между переменными.

F-критерий показывает уровень адекватности модели. При значении F- критерия > 3 модель считается адекватной.

р-значение показывает уровень значимости модели или ее компонентов. Если р-значение меньше чем 0.05, то имеется статистически существенная зависимость между переменными с 95 % уровнем доверительности.

Т-критерий показывает уровень достоверности модели. Модель считается достоверной при значении Т-критерии >3.

Ниже приведены наиболее значимые модели для описания отношений между переменными.

у1– средняя продолжительность жизни женщин

Обратная-Xмодель: Y = a + b/X

Зависимая переменная: y1 - средняя продолжительность жизни женщин

Независимая переменная: x3 - количество человек на 1 врача


Стандартная T р-

Параметр Оценка Ошибка критерий значение


Свободный член 64,5814 2,2283 28,9823 0,0000

Параметр 2141,42 550,556 3,88956 0,0030


Дисперсионный анализ


Источник Сумма Число Среднее F- р-

квадратов значений квадратов критерий значение


Модель 39,1266 1 39,1266 15,13 0,0030

Остаток 25,8626 10 2,58626


Всего 64,9892 11

Коэффициент корреляции = 0,775917

R2 = 60,2048 процента

Стандартная ошибка оценки = 1,60818

Уравнение регрессионной модели:

y1 = 64,5814 + 2141,42/x3

у2 – средняя продолжительность жизни мужчин

Мультипликативная модель: Y = a*X^b

Зависимая переменная: y2 – средняя продолжительность жизни мужчин

Независимая переменная: x5 - протяженность дорог, км


Стандартная T р-

Параметр Оценка Ошибка критерий значение


Свободный член 4,42797 0,104014 42,571 0,0000

Параметр -0,0241414 0,00963474 -2,50566 0,0311


Дисперсионный анализ


Источник Сумма Число Среднее F- р-

квадратов значений квадратов критерий значение


Модель 0,0123563 1 0,0123563 6,28 0,0311

Остаток 0,0196808 10 0,00196808


Всего 0,0320372 11

Коэффициент корреляции = -0,621037

R2 = 38,5687 процента

Стандартная ошибка оценки = 0,0443631

Уравнение регрессионной модели:

y2 = 83,7608*x5^-0,0241414

у3 – рождаемость на 1000 человек


Линейная модель: Y = a + b*X

Зависимая переменная: y3 – рождаемость на 1000 человек

Независимая переменная: x1 - расходы на здравоохранение на душу населения, $


Стандартная T р-