ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ
им. А. Ф. МОЖАЙСКОГО
____________________________________________________________________________________________________________
ФАКУЛЬТЕТ № 6
Курсовая работа
По дисциплине
«Анализ технического состояния БС РН и КА»
Тема: Синтез оптимальной ГПА технического состояния системы угловой стабилизации (СУС) КА по критерию минимума средних затрат с помощью МДП.
Выполнил: курсант 645 уч.гр.
еф-р Габов Р.А.
Проверил: профессор 65 кафедры.
дтн Дмитриев А.К.
Введение.
Задача синтеза оптимальных в том или ином смысле программ диагностирования может быть сформулирована и решена в рамках рассмотренных ранее агрегированных моделей или их аналогов. Пусть, например, в соответствии с моделью, представленной в таблице, задано упорядоченное множество технических состояний объекта.
Признаками являются обозначения наиболее вероятных исходов выполняемых проверок технических состояний или так называемые "модельные" исходы проверок в данном состоянии.
Предположим, что для каждого технического состояния найдена соответствующая вероятность , т.е. вероятность пребывания объекта в работоспособном или неработоспособном состоянии, обусловленное отказом какого-либо блока. Напомним, что под блоками понимаются любые функциональные элементы объекта, с точностью до которых производится распознавание дефектов.
Теоретические положения.
С учетом введенных обозначений формулу для определения математического ожидания затрат (средних затрат)
на распознавание ТС БС по данной программе можем записать в следующем виде:. (1)
Задача синтеза оптимальной по затратам программы заключается в отыскании всех подмножеств
, при которых показатель принимает минимальное значение. Эта задача решается соответствующим выбором проверяемых признаков. Так как все ветви исходят из начального ФС , то в качестве первого проверяемого признака во всех искомых подмножествах будет выступать один и тот же признак. В зависимости от исхода его проверки выбираются последующие признаки. Последовательность случайных исходов проверок выбранных признаков определяет ветвь , по которой будет развиваться процесс распознавания ТС БС. Заметим, что этот процесс обладает марковским свойством, в соответствии с которым исходы проверок, входящие в одну ветвь , являются независимыми событиями, а поэтому, (2)
где
– вероятность -го исхода проверки признака в ФС .Вероятность
определяется вероятностью перехода ФС в ФС согласно отображению (3) и вычисляется по формуле(3)
где знаком
обозначена длина соответствующего подынтервала;(4)
В процедуре выбора проверяемых признаков формулы (1) и (2) непосредственно не могут быть использованы, так как фигурирующие в них множества
и неизвестны. С помощью этих формул можно вычислить показатель средних затрат для уже составленной или заданной программы, в которой указанные множества определены. В процессе же составления оптимальной программы возникает необходимость вычислять этот показатель для всех гипотетических -подпрограмм искомой программы.Под
-подпрограммой понимается часть графа , получаемая выделением в нем любой вершины вместе с выходящими из нее путями и областью ее достижимости (множество вершин, достижимых из , в том числе и конечных вершин , ). Вершина будет соответствовать начальному ФС, а выходящие из нее пути – ветвям -подпрограммы. Каждая ветвь -подпрограммы есть продолжение одной из ветвей всей программы, проходящих через вершину . Поэтому обозначим ее , сохранив при этом номер ветви , которую она продолжает. Множество всех ветвей -подпрограммы обозначим через , а подмножество признаков , входящих в отдельную ветвь , – через . Тогда формулу для вычисления средних затрат на реализацию -подпрограммы можем записать в следующем виде:, (5)
где
– вероятность ветви , определяемая через исходные вероятности из условия нормировки. (6)
Очевидно, что
. (7)
В частном случае, когда
( -подпрограмма совпадает со всей программой), выполняются равенства , , и формула (5) переходит в формулу (1). Таким образом, формула (11) есть частный вид общей формулы (5), позволяющей оценивать средние затраты для любой ‑подпрограммы ( ). Поэтому с ее помощью можем последовательно выбирать оптимальные признаки в каждом из фазовых состояний , начиная с тех, которые содержат два элемента , и завершая начальным состоянием , содержащим элементов. Такая многошаговая процедура позволяет однозначно определить множества и , которые необходимы для применения формулы (5). Основной недостаток при этом заключается в том, что, переходя к очередному ФС , содержащему большее число элементов, мы вынуждены выполнять заново все вычисления по формуле (5), причем по мере увеличения числа элементов в сложность соответствующей -подпрограммы возрастает, а, следовательно, возрастает и трудоемкость вычислений.