K = (P*fC 2)/25 = 510.76 (кг*с)/см.
Установка установлена на четырёх одинаковых виброизоляторах Þ
k = K/n = 127.7 (кг*с/см).
Такой жёсткости соответствует стандартный виброизолятор типа АКСС-15М [5].
В итоге вибрация снижена до 93 дБ, т.е. до нормы.
Виброизолятор типа АКСС:
1 – несущая планка-втулка;
2 – резиновый массив;
3 – скоба;
4 – нижняя планка.
Расчёт и проектирование средств шумозащиты
Повышенный шум является одним из наиболее распространенных вредных и опасных производственных факторов. Повышенный шум воздействует как на органы слуха, так и на весь организм.
Средства и методы коллективной защиты от шума в зависимости от способа реализации подразделяются на: акустические; архитектурно-планировочные (рациональное размещение рабочих мест, оборудования, машин, механизмов, рациональная планировка здания); организационно-технические (применение малошумных технологических процессов, малошумных машин, оснащение шумных машин средствами дистанционного управления и автоматического контроля).
Акустические средства защиты от шума в зависимости от конструкции подразделяются на: средства звукоизоляции; звукопоглощения (звукопоглощающие облицовки); виброизоляции (виброизоляторы, упругие прокладки); демпфирования.
Средства звукоизоляции являются основными средствами защиты от шума в машиностроении. Звукоизолирующие перегородки устанавливаются там, где необходимо отделить источник повышенного шума от остального помещения. Звукоизолирующие кабины устанавливаются в шумных помещениях для наблюдения или управления разнообразными технологическими процессами. Звукоизолирующие капоты устанавливаются на источники повышенного шума, расположенные в помещение, обслуживание которых не требует непосредственного доступа к ним или автоматизировано. Акустические экраны устанавливаются вблизи шумных источников, создавая за ними зону акустической тени.
Для защиты от ультразвукового воздействия приемлемы те же методы и способы, которые применимы к акустическому излучению в слышимом диапазоне.
Зададим размеры источника шума. Пусть l = 1 м, lmax = 2 м. По заданию расчёт произвожу для частоты 31.5 Гц. УЗД31.5 = 95-5 = 90 дБ = L
Одним из эффективных способов снижения шума в производственных помещениях является устройство звукоизолирующих кожухов, полностью закрывающих наиболее шумные агрегаты.
Рассчитаем такой кожух. Требуемая акустическая эффективность звукоизолирующего кожуха определяется по формуле:
DLэф тр = L – Lдоп + 5 = 90 – 80 + 5 = 15 дБ.
Акустическая эффективность кожуха определяется по формуле:
DLкож = Rк + 10*lg a – Dотв;
где a – приведённый коэффициент звукоизоляции кожуха; Dотв – поправка на уменьшение звукоизоляции за счёт наличия отверстий, при площади отверстий до 5% от общей площади ограждений кожуха, принимается Dотв = 3¸5 дБ; Rк – звукоизолирующая способность стенки кожуха (определяется поверхностной плотностью и жёсткостью, и увеличивается при нанесении на стенку кожуха слоя звукопоглощающего материала).
a = (aобл * Sобл + aн * Sн + aотв * Sотв + aист * Sист ) / (Sобл + Sн + Sотв + Sист);
где aобл – коэффициент звукопоглощения звукопоглощающей облицовки; Sобл – площадь звукопоглощающей облицовки; aн – коэффициент звукопоглощения необлицованных областей; Sн – площадь необлицованных областей; aотв – коэффициент звукопоглащения отверстий; Sотв – площадь отверстий; aист – коэффициент звукопоглащения источника;
Sист – площадь источника.
Пусть aобл = 0, aн =0.01, aист = 0.03, aотв = 1, Sобл = 0, Sн = 3, Sист =2, Sотв = 3* Sн/100 = 0.09, тогда a = 0.035, 10*lg a = – 14.56.
Требуемая звукопоглощающая способность стенки кожуха определяется по формуле:
Rк тр = DLэф тр + Dотв – 10*lg a = 15 + 5 + 14.56 = 34.5 дБ;
Rк > Rк тр Þ Rк = 50 дБ; DLкож = 50 – 14.56 – 5 = 30.44.
Кожухи могут выполняться из стали, дюралюминия, стеклопластика, фанеры и других материалов. Данный кожух выполняется из стали толщиной 20мм.
Lфактич. = L - DLкож +5 = 95 – 30.44 + 5 = 69.56 дБ.
УЗД = 69.56+5 = 74.56. В итоге шум снижен до уровня 74.56 дБ.
Звукоизолирующий кожух:
1 - кожух; 2 - вторичный глушитель;
3 - первичный глушитель; 4 - гибкие соединения;
5 - глушитель на впуске воздуха;
6 - звуконепроницаемая дверь; 7 - виброизолятор;
8 - глушитель на выпуске воздуха.
Расчёт защиты воздуха рабочей зоны от вредных веществ и аэрозолей
Для поддержания в производственных помещениях нормальных параметров воздушной среды устраивают вентиляцию. В зависимости от направления воздушного потока вентиляционные системы подразделяют на приточные, вытяжные или приточно-вытяжные, а по характеру охвата производственного помещения воздухообменом – на общеобменные и местные.
Воздух, поступающий в помещение через неплотности ограждающих конструкций не содержит вредных веществ, поэтому применяем местную вытяжную вентиляцию, схема которой представлена на рисунке:
При работе вытяжной системы чистый воздух поступает в помещение через неплотности в ограждающих конструкциях.
Необходимый воздухообмен в производственных помещениях рассчитывают в зависимости от конкретных условий каждого помещения, однако наиболее широко используют следующие методы: исходя из количества работающих; наличия в воздухе рабочей зоны вредных веществ, избытков явного тепла.
При наличии вредных веществ в воздухе рабочей зоны необходимый воздухообмен определяют по формуле:
,где К - коэффициент, учитывающий неравномерность распределения вредных веществ по помещению, К = 1,5; G - количество вредных веществ, поступающих в воздух рабочей зоны, мг/ч; q1 - допустимое содержание вредного вещества в воздухе рабочей зоны ( q1 = qПДК ), мг/м3; q2 - допустимое содержание вредного вещества в приточном воздухе (q2 = 0,3 qПДК ), мг/м3.
Пусть объем помещения равен 1000 м3.
Тогда для вредных веществ:
м3/ч.И для пыли:
м3/ч.Принимаем величину вытяжки L = 10714.3 м3/ч.
Для обеспечения требуемого воздухообмена будем использовать радиальный вентилятор с загнутыми вперед лопатками:
При рассчитанном необходимом воздухообмене 10714.3 м3/ч подойдет вентилятор ВР 80-75 №6 с электродвигателем АИР100L4, полным давлением 886-780 Па, мощностью 4 кВт.
Данную вентиляционную систему необходимо присоединить к пылеуловителю.
Пылеуловитель камерный:
1 – патрубок; 2 – патрубок выходной; 3 – расширительная камера; 4 – бункер
Защита от ультразвука и инфразвука
Для защиты от ультразвука следует перевести рабочие частоты источника в слышимый диапазон, либо провести звукоизоляцию источника, либо, если это невозможно, установить абстракционный глушитель.
Чтобы снизить воздействие инфразвука, нужно перевести рабочие частоты источника в слышимый диапазон, либо устранить причины генерации и/з в источнике (например, повысить жесткость конструкции больших размеров), либо провести звукоизоляцию источника (установить капот), либо снабдить рабочего средствами индивидуальной защиты (спец. противошумами). Звукоизоляция и звукопоглощение в борьбе с инфразвуком малоэффективны, поэтому наиболее надежно воспользоваться методом, направленным на ослабление и/з или снижение его возникновения в источнике.
Разработка мер по снижению температуры.
Для поддержания определённых температурно-влажностных условий применяют кондиционирование. Кондиционер-это вентиляционная установка, которая с помощью приборов автоматического регулирования поддерживает в помещении заданные параметры воздушной среды. Установка центрального кондиционера позволит поддерживать температуру в заданных пределах.
Меры по снижению тяжести труда
Физическая нагрузка уменьшается за счёт механизации и различных приспособлений, организации работ и др. При этом необходимо учитывать, что в соответствии с ГОСТ 12.3.020-80, перемещение грузов массой более 20 кг. В технологическом процессе должно производиться с помощью подъёмно – транспортных устройств или средств механизации. Также должно быть механизировано перемещение грузов в технологическом процессе на расстояние более 25 м.
Оценка условий труда после применения мероприятий по улучшению условий труда
В соответствии с проведёнными мероприятиями по улучшению условий труда производим оценку условий труда.
Оценки условий труда работника по степени вредности и опасности после проведения комплекса мероприятий по их улучшению приведены в итоговой таблице 3.
Таблица 3
Фактор | Класс условий труда | ||||||
Оптимальный | Допустимый | Вредный | Опасный (экстрем.) | ||||
1 | 2 | 3.1 | 3.2 | 3.3 | 3.4 | 4 | |
Химический | ¢ | ||||||
Аэрозоли ПФД | ¢ | ||||||
Шум | ¢ | ||||||
Инфразвук | ¢ | ||||||
Ультразвук | ¢ | ||||||
Вибрация общая | ¢ | ||||||
Неионизирующие излучения | ¢ | ||||||
Микроклимат | ¢ | ||||||
Освещение | ¢ | ||||||
Напряженность труда | ¢ | ||||||
Общая оценка условий труда | ¢ |
Заключение
На основании исходных данных был проведен анализ условий труда на рабочем месте слесаря-сборщика, в результате которого было обнаружено превышение допустимых значений факторов производственной среды.
Разработка мероприятий по улучшению условий труда была осуществлена для каждого из факторов, по которым были превышены ПДК и ПДУ.
Был предложен комплекс мер по их улучшению, позволяющий снизить класс условий труда, превышающих допустимые значения, до оптимального уровня.
Список использованной литературы
1. Оценка условий труда на рабочем месте и разработка комплекса мероприятий по их улучшению, под ред. Н.И. Иванова, И. М. Фадина, 2009.
2. Государственные стандарты. Система стандартов безопасности труда.
3. Охрана труда: Альбом. Под редакцией Н.И. Иванова, И. М. Фадина. 1990.
4. Организационные основы охраны труда. В.Н. Сидоров. 2005.
5. ГОСТ 17053.1-80, ГОСТ 17053.2-80. Амортизаторы корабельные АКСС-М и арматура.