Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризую- щийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.
Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов, формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке SiO2 со структурой стишовита в структурный тип CaCl2 (ромбический аналог рутила TiO2), а 2000 км - его последующему преобразованию в фазу со структурой, промежуточной между a-PbO2 и ZrO2 , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO3, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al2O3 со структурой корунда в фазу со структурой Rh2O3, экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. ' использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику обогащенных им глубинных зон Земли вблизи границы D".
Рис. 3. Тетрагональная струк- тура Fe7S-возможного компо- нента внутреннего (твердого) ядра, по Д.М. Шерману (1997)
Сейсмологические измерения указывают на то, что и внутреннее (твердое) и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах. Это уменьшение плотности большинство исследователей связывают с присутствием в ядре таких элементов, как Si, O, S и даже О, образующих сплавы с железом. Среди фаз, вероятных для таких "фаустовских" физико-химических условий (давления ~250 ГПа и температуры 4000-6500 0С), называются Fe3S с хорошо известным структурным типом Cu3Au и Fe7S, структура которого изображена на рис. 3. Другой предполагаемой в ядре фазой является b-Fe, структура которой характеризуется четырехслойной плотнейшей упаковкой атомов Fe. Температура плавления этой фазы оценивается в 5000 0С при давлении 360 ГПа. Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние экспериме- нты (данные Дж. Бэддинга, Х. Мао и Р. Хэмли (1992)) позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии.
Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород. Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.
К 80-м годам XX века сейсмологические исследования методами продольных и поперечных сейсмических волн, способных проникать через весь объем Земли, а потому названных объемными в отличие от поверхностных, распределяющихся лишь по ее поверхности, оказались уже настолько существенными, что позволили составлять карты сейсмических аномалий для разных уровней планеты. Фундаментальные работы в этой области выполнены американским сейсмологом А. Дзевонски и его коллегами [5].
На рис. 4 приведены образцы подобных карт из серии, опубликованной в 1994 году, хотя первые публикации появились на 10 лет раньше. В работе [5] приведены 12 карт для глубинных срезов Земли в интервале от 50 до 2850 км, то есть практически охватывающих всю мантию. На этих интереснейших картах легко видеть, что сейсмическая картина на различных уровнях глубины разная. Это видно по площадям и контурам распространения сейсмоаномальных ареалов, особенностям переходов между ними и вообще по общему облику карт. Отдельные из них отличаются большой пестротой и контрастностью в распределении областей с различными скоростями сейсмических волн (рис. 5), тогда как на других видны более сглаженные и простые соотношения между ними.
В том же, 1994 году вышла в свет аналогичная работа японских геофизиков [6]. В ней приведены 14 карт для уровней от 78 до 2900 км. На обеих сериях карт ясно видна тихоокеанская неоднородность, которая хоть и меняется в очертаниях, но прослеживается вплоть до земного ядра. За пределами этой крупной неоднородности сейсмическая картина усложняется, значительно меняясь при переходе от одного уровня к другому. Но, сколь бы значительно ни было различие этих карт, между отдельными из них просматриваются черты сходства. Они выражаются в некотором подобии в размещении в пространстве положительных и отрицательных сейсмоаномалий и в конечном счете в общих особенностях глубинной сейсмоструктуры. Это позволяет группировать такие карты, что дает возможность выделять внутримантийные оболочки разного сейсмического облика. И такая работа была выполнена [7]. На основе анализа карт японских геофизиков оказалось возможным предложить существенно более дробную структуру мантии Земли, показанную на рис. 5, по сравнению с традиционной моделью земных оболочек.
Принципиально новыми являются два положения:
а) обособление мощной средней мантии в пределах ранее недифференцированной нижней мантии;
б) выделение зон раздела между верхней и средней мантиями, а также между средней и нижней. В такой интерпретации мощность нижней мантии сократилась в три раза и составляет приблизительно 700 км. При этом нижняя мантия отвечает зоне непосредственного влияния внешнего ядра. Ее нижняя часть испытывает наиболее интенсивное влияние и соответствует слою D". Над этой оболочкой располагается область с существенно более пестрой картиной распределения сейсмоаномалий, имеющая мощность порядка 500 км. Эта область разграничивает нижнюю и среднюю мантию, отличающуюся более значительными по площади и менее контрастными сейсмическими ареалами. Мощность средней мантии около 860 км. Подчеркнем, что средняя мантия прекрасно обособляется также на картах американских сейсмологов. Над ней снова выделяется область с относительно более сложной картиной распределения сейсмоаномалий, которая отделяет верхнюю мантию. Мощность зоны раздела приблизительно 170 км. Это касается верхней мантии, то она соответствует традиционной модели. Рубеж 410, как уже отмечалось, делит ее на две части: нижнюю и верхнюю. Таким образом суммарно выделяются шесть глубинных геосфер.