Этому есть ясное физическое объяснение. Дело в том, что исследуемая порода помимо анизотропии по упругим характеристикам обладает также ярко выраженной анизотропией по прочностным свойствам: прочность породы в вертикальном направлении, т.е. перпендикулярно напластованию, в таких средах значительно ниже, чем в горизонтальном направлении, т.е. по напластованию. В точке М порода при понижении давления в скважине разгружается в вертикальном направлении, т.е. а направлении, в котором у нее прочность наименьшая. Кроме того, она при этом подвергается еще большему сжатию вдоль слоев кольцевым напряжением σθ, что также способствует расслоению породы в вертикальном направлении. Именно такой вид разрушения породы и наблюдался в большинстве опытов. В точке N мы имеем иную картину. Порода здесь при понижении давления в скважине разгружается вдоль напластования, т.е. в направлении, в котором прочность породы максимальна. Более того, горизонтальные слои оказываются сжаты большими кольцевыми напряжениями σθ, что также повышает сопротивляемость породы разрушению. В результате вблизи точки N даже при больших депрессиях разрушение породы не наступает.
Важнейшей характеристикой для прогнозирования устойчивости стволов скважины при бурении является скорость ползучести породы. Скорость ползучести — это деформация, накапливаемая породой в единицу времени при постоянной нагрузке. Ползучестью в той или иной мере обладают все горные породы, но обычно она бывает столь мала, что не вызывает осложнений при бурении и эксплуатации скважин. Однако есть породы, обладающие сильной ползучестью. В этом случае за достаточно непродолжительное время накапливаемая в породе деформация может достигать критического значения (предельной деформации), при котором начинается разрушение породы. С этой точки зрения все испытанные образцы можно разделить на две группы: примерно половину составили прочные образцы, которые даже под действием напряжений, отвечающих максимальным депрессиям (150-200 атм.), деформировались упруго без всяких признаков разрушения, а половину — слабые образцы, которые начинали интенсивно деформироваться («ползти») и разрушаться уже при низких нагрузках, отвечающих депрессиям 5 — 25 атм. В качестве примера на рис. 6 показаны результаты испытаний прочного образца, а на рис. 7 и рис. 8 — слабых образцов.
Заключение
Результаты испытаний образцов на установке ИСТНН показали, что бурение горизонтальных стволов на депрессии в баженовских отложениях с большой вероятностью может привести к потере устойчивости даже при минимальных депрессиях 5-25 атм.
Этот вывод в наибольшей степени обоснован для Ульяновского месторождения, поскольку для него была испытана достаточно представительная коллекция образцов. Для более обоснованных выводов по Камынскому и Сыхтынглорскому месторождениям требуется проведение дополнительных испытаний.
В ходе испытаний образцов была установлена существенная зависимость прочности породы от направления разгрузки по отношению к направлению плоскостей напластования. С этим явлением, вероятно, связано хорошо известное на практике влияние геометрии ствола скважины на устойчивость пород.
Результаты проведенных исследований позволяют сделать важный вывод о том, что при бурении ГС на депрессиях роль деформационных и прочностных свойств пород, в которых ведется бурение, многократно возрастает по сравнению с обычными технологиями проводки скважин. Без знания таких характеристик пласта, как вид и степень его анизотропии, значение упругих и прочностных констант в разных направлениях, степень деформирования и ползучести породы при различных нагрузках и геометрии скважин невозможно выбирать оптимальные технологические параметры ведения работ, обеспечивающих устойчивость стволов скважин при бурении. Этот вывод в полной мере относится и к бурению наклонных скважин.
Список литературы
1. Лехницкий С.Г. Теория упругости анизотропного тела. М. Изд-во «Наука», 1977, с. 178.