- с гидрогеодинамической точки зрения: нежелательно понижать уровень в пласт известняков, так как будет резко уменьшаться его проводимость (основные проводящие зоны, по данным расходометрии, расположены именно в верхней части пласта).
Наиболее простое решение - принять допустимое понижение до кровли известняков, т.е. округленно
6 м.Тогда
3.16×104 куб.м/сут; 7.69.Максимально возможный дебит одиночной скважины составит
≈ 4 тыс. куб.м/сут. Следовательно, сколько скважин нужно для получения заявленной потребности? Казалось бы, две равнодебитных. Но на каком расстоянии их расположить?Выведем расчетную формулу для понижения в любой из этих двух скважин (понятно, что в неограниченной однородной области понижения в них будут одинаковыми, поскольку равны дебиты
). По принципу сложения решений:,
где
- полное понижение в скв.1, - "собственное" понижение в скв.1, - понижение в скв.1 от действия скв.2.Соответственно:
откуда можно оценить дебит, с которым может работать каждая скважина при допустимом понижении:
Далее для наглядности будем действовать простым подбором, хотя это уравнение решается относительно
достаточно просто. Для первого приближения примем, например, = 10 м. Тогда = 3.16×104 / (7.69 + 3.78) = 2.76 тыс. куб.м/сут, т.е. две скважины в сумме дадут только 5.5 тыс. куб.м/сут !Что делать? Конечно же, "раздвигать" скважины. Примем
= 50 м: = 3.16×104 / (7.69 + 2.17) = 3.2 тыс. куб.м/сут. Мало!Разводим скважины еще дальше
= 100 м: = 3.16× 104 / (7.69 + 1.47) = 3.45 тыс. куб.м/сут. Все равно мало!Придется сообразить, что двумя скважинами можно получить заявленный дебит 8 тыс. куб.м/сут только в том случае, если они не будут взаимодействовать между собой, т.е. если
, что достижимо только, если . Это, в свою очередь, возможно только, если 440 м.Итак, первый, самый простой вариант водозабора: две скважины на расстоянии 440 м (не менее) друг от друга.
Чтобы сделать водозабор компактнее, придется увеличивать количество скважин. Поэтому следующий вариант расчета - три равнодебитные скважины с дебитами
= 2.67 тыс. куб.м/сут; для них самая компактная схема расположения - в вершинах равностороннего треугольника, т.е. = (рис. 1, а).Рассуждая как в предыдущем случае, получим для трех скважин:
В этом уравнении только одно неизвестное - расстояние между скважинами; решение его дает
≈ 70 м. Как видно, этот вариант расстановки уже существенно компактней.Ясно, что далее можно рассмотреть четыре скважины - в вершинах квадрата со стороной
(рис. 1, б) при дебите каждой скважины = 2 тыс.куб.м/сут и т.д. (рекомендуем студентам проделать это самостоятельно).Рис. 1. Варианты возможной схемы водозабора |
Важен общий вывод: в конкретном случае не существует некоей однозначно "правильной" схемы водозабора, можно предложить целую серию различных вариантов - либо много близкорасположенных скважин, либо мало, но достаточно удаленных. Каждый из этих вариантов имеет свои достоинства и недостатки; оптимальный вариант всегда выбирается с учетом некоторых дополнительных, "внешних" соображений - экономических, условий строительства, землепользования и т.п. Заметим также, что на возможную величину дебита эксплуатационной скважины накладываются также ограничения, связанные с характеристиками серийных насосов и фильтрового оборудования, допустимыми скоростями потока в прискважинной зоне и др.
Завершим рассмотрение этого примера анализом источников формирования эксплуатационного водоотбора. В связи с быстрым наступлением стационара и небольшим размером депрессионной воронки (радиус питания, как мы можем судить по величине фактора перетекания, не превышает 400-500 м) можно исключить из анализа явно второстепенную и кратковременно проявляющуюся величину упругих естественных запасов основного, подольско-мячковского горизонта.
В естественных условиях по всей площади днища долины (пойменные и надпойменные террасы) происходит разгрузка потока из основного горизонта восходящим перетеканием в аллювиальный водоносный горизонт (рис. 2); естественная разность напоров в этих горизонтах составляет 0.5 - 1.5 м.
Рис. 2. Принципиальная балансово-гидродинамическая схема |
При эксплуатационном понижении напоров основного горизонта практически по всей площади воронки интенсивность разгрузки уменьшается, а в центральной части депрессии прекращается полностью. Суммарное сокращение расхода естественной разгрузки характеризует долю использования естественных ресурсов основного горизонта.
В зоне полной инверсии разгрузки на некоторой площади возникнет перетекание обратного направления - из аллювия в основной горизонт, что означает появление в балансовой структуре водоотбора привлекаемых ресурсов для основного горизонта.
Однако, обязательно нужно задуматься и понять: в аллювиальном горизонте тоже нарушились естественные балансовые условия (хотя из него и нет водоотбора).
- Во-первых, сократилось ранее существовавшее питание в виде перетекания из известняков; уже один этот факт неминуемо вызовет определенное снижение уровней в аллювии (должен уменьшиться градиент напора в потоке к реке).
- Во вторых, нужно чем-то обеспечивать возникшее перетекание в известняки. Чем? Сначала расходуются просто емкостные запасы аллювия, в результате чего в нем продолжает развиваться понижение уровней; в какой- то момент понижение достигает уреза р.Москвы, начинается инверсия естественной разгрузки из аллювия в реку, которая в итоге на определенном участке приводит к возникновению притока из реки в аллювиальный пласт (т.е. в общей балансовой схеме появляются привлекаемые ресурсы для аллювиального горизонта).
После завершения описанной перестройки естественной балансово-гидродинамической системы картина понижений стабилизируется окончательно и водоотбор может продолжаться теоретически неограниченно долго. Как же будет выглядеть балансовое уравнение водоотбора? Студентам полезно попытаться составить его самостоятельно, прежде чем продолжить чтение этого конспекта.
.Как ни обидно, но возникшее перетекание из аллювия в эксплуатируемый горизонт известняков в это уравнение не входит! Весь водоотбор в стационарном режиме компенсируется:
1) естественными ресурсами основного эксплуатируемого горизонта
(расход сокращения естественной разгрузки в аллювий)2) естественными ресурсами смежного аллювиального горизонта
(расход сокращения разгрузки в р.Москву -но за вычетом расхода п.1!)
3) привлекаемыми ресурсами в аллювиальный горизонт
(расход вызванного притока в аллювиальный горизонт из р.Москвы).