Смекни!
smekni.com

Гидродинамический метод оценки ЭЗ (стр. 2 из 3)

Полезная, но пока слабо разработанная методически вещь: применение так называемых разведочных расчетов (В.М.Шестаков), факторно-диапазонного анализа (И.К.Гавич); суть их заключается в экспериментальной (обычно на модели) оценке влияния того или иного элемента фильтрационной схемы на конечный результат прогнозного расчета.

ГРАНИЧНЫЕ УСЛОВИЯ потока в плане и в разрезе (ГУ). Они должны быть определены для области ожидаемой воронки депрессии. Но существует и обратная связь - размер воронки, в свою очередь, зависит от характера и положения граничных условий, поэтому вопрос о необходимых размерах области решения прогнозной задачи приходится решать путем последовательных приближений.

ГУ могут быть внешними и внутренними; внешние должны быть определены в любом случае, внутренние - если они имеются.

Для каждого граничного элемента необходимо обосновать:

пространственное положение и форму граничного условия (точка, линия, поверхность),

гидродинамический род условия,

количественные показатели условия (для каждого рода - свой набор).

Возможные варианты РОДА ГРАНИЧНЫХ УСЛОВИЙ: обычно говорят о трех родах граничных условий, хотя можно обойтись и двумя.

Математическое описание граничных условий делаем (для простоты) в удельной форме, т.е. на единицу (длины, площади) граничного элемента.

= Граничное условие 2 рода - ЗАДАННОЙ ЯВЛЯЕТСЯ ФУНКЦИЯ РАСХОДА ЧЕРЕЗ ГРАНИЦУ:

; здесь ГК - набор координат граничного элемента, т.е.
в зависимости от мерности потока и границы.

Что значит "является заданной"?

Это значит, что функциональное описание величины трансграничного расхода известно заранее на весь период прогноза и не зависит от изменений, происходящих в области под влиянием водозабора в прогнозный период. Напор на границе 2 рода на прогноз неизвестен и вычисляется как результат решения.

Пример: поток, приходящий в расчетную область из удаленных областей питания ("боковой приток"); его величина не зависит ни от каких изменений напора

в расчетной области, т.е. не реагирует на работу водозабора.

Частные случаи ГУ 2 рода:

-

- расход через границу не зависит от времени, но может быть разным на разных участках границы;

-

- расход через границу не зависит от времени и одинаковый для всей границы;

-

- непроницаемая граница.

= Граничное условие 3 рода - ЗАДАННЫМ ЯВЛЯЕТСЯ ЛИНЕЙНЫЙ ХАРАКТЕР СВЯЗИ МЕЖДУ РАСХОДОМ ЧЕРЕЗ ГРАНИЦУ И НАПОРОМ В ПЛАСТЕ (точнее - перепадом напоров между пластом и границей).

На такой границе неизвестны ни напор

в приграничной области пласта, ни трансграничный расход
; они взаимно регулируют друг друга: изменение напора (в нашем случае - понижение от действия водоотбора) вызывает пропорциональное изменение расхода, который, в свою очередь, влияет на положение уровней:

,

при этом (рис.1):

, т.е. напор на границе известен заранее и не зависит от ситуации в пласте (это упрощенное описание, но пока будем рассматривать именно так);

- формально коэффициент пропорциональности между разностью напоров и расходом через границу; физически - это фильтрационное сопротивление границы, т.е. параметр граничного условия 3 рода. В простом случае
- мощность слоя отложений, создающих сопротивление между граничным напором и пластом (это может быть экран под руслом реки или разделяющий слой в пластовой водоносной системе),
- коэффициент фильтрации этих отложений.

Частные случаи ГУ 3 рода:

-

- напор на границе неизменен во времени;

-

- и к тому же постоянен для всего граничного элемента;

-

,
- то же для сопротивления граничного элемента;

= Особая ситуация при

- понятно, что в этом случае должно быть
, т.е. на такой границе устанавливается условие 1 рода (
).
Рис.1. Граничное условие 3 рода на контуре водотока (водоема) в ЕСТЕСТВЕННЫХ УСЛОВИЯХ (синий цвет) и при РАБОТЕ ВОДОЗАБОРА (красный цвет)

• Завершающий пункт схематизации - распределение ИСТОЧНИКОВ-СТОКОВ. Сюда относят:

все виды поступления воды в пласт (источники, балансовый знак +)

все виды расходования воды из пласта (стоки, балансовый знак -),

которые почему-либо не вошли в вышеописанные "стандартные" ГУ.

Например, инфильтрация - это, по сути, площадное условие 2 рода с заданной интенсивностью (модулем)

- расход питания на 1 кв.м площади.

Другой распространенный пример: скважины - нагнетательные, водозаборные, дренажные и т.п. - это практически точечные (с радиусом

) граничные условия 1 рода, если в скважинах задан уровень/понижение, а вычисляется их дебит, или 2 рода (если задан дебит, а нужно вычислить уровень/понижение в скважинах).

К вопросам расчетной схематизации относится и одна из важнейших и распространенных особенностей решения задач оценки ЭЗ - применение СУПЕРПОЗИЦИИ (СЛОЖЕНИЕ РЕШЕНИЙ). Этот прием, разумеется, является общим для всех задач фильтрации и должен быть уже в принципе рассмотрен в курсе "Гидрогеодинамика".

Его математическое содержание - согласно теореме наложения, линейное дифференциальное уравнение можно разложить на два уравнения, решить каждое отдельно, полученные решения сложить - их сумма будет являться решением общего исходного уравнения. Как это свойство используется при решении задач расчета водозаборных сооружений ?

На примере планового потока (хотя вообще-то мерность неважна):

(0)

- это распределение

в плане по
и во времени
в естественных условиях (без водоотбора) под действием режимообразующих факторов
.

При работе водозабора :

(1)

- это распределение

в плане по
и во времени
под действием как-то изменившихся (в результате водоотбора с дебитом
) режимообразующих факторов
.

Согласно принципу суперпозиции, эти уравнения можно алгебраически складывать. Из (0) вычтем (1):

(2)

- это распределение изменений

в плане по
и во времени
под действием изменений режимообразующих факторов
и при дебите водоотбора
.

Обозначим

,
; тогда (2) примет вполне понятный вид:

(2а)

Так как нас в конечном счете, в основном, интересуют только понижения (чтобы сравнивать их с допустимыми), то можно ограничиться только решением уравнения (2а). Если же для каких-то целей необходимо распределение "полных" напоров

, то можно прямо сложить полученные понижения (2а) с естественными напорами (0) и рассматривать их сумму как решение уравнения (1). В частности, такая необходимость возникает, если есть нужда в последующем моделировании миграции - для этого ведь нужны "полные" скорости потока.