В верхней мантии область пониженных скоростей в районе вулканов Авачинско-Корякской группы выражена также повышенной электропроводностью, что связывается с подъемом астеносферного слоя до глубины 50 км (см. рис.1). Аномальные свойства верхней мантии на глубинах 35-90 км могут быть обусловлены наличием магматических расплавов.
2. Глубинное строение района Авачинско-Корякской группы вулканов
Современные вулканы располагаются в районах, где наиболее активно протекают геодинамические процессы в литосфере, выраженные повышенной сейсмичностью, магматизмом и гидротермальной активностью. Изучение глубинного строения современных вулканов имеет важное значение для развития теоретической геологии и геодинамики. Практическое значение имеет поиск геотермальных месторождений, связанных с магматическими очагами, питающих вулканы. На Южной Камчатке геофизическими методами наиболее изучен район Авачинско-Корякской группы вулканов, расположенный ~ в 50км от г.Петропавловск-Камчатский. Действующими и наиболее крупными из вулканов этой группы являются Корякский и Авачинский. Вулканические постройки сложены четвертичными и современными эффузивно-пирокластическими образованиями. Они приурочены к Авачинской депрессии, выполненной палеоген-неогеновыми вулканогенно-осадочными породами. Депрессия является составной частью так называемой Петропавловск-Малкинской зоны поперечных дислокаций, имеющей северо-западное простирание. Большую роль в строении зоны играют разломы северо-западной ориентировки, определяющие ее блоковое строение [7]. В районе Авачинско-Корякской группы вулканов проведены гравиметрические [13], сейсмологические [2,8,9 и др.], и электромагнитные [12,14,17] исследования. К настоящему времени мы располагаем большим объемом геофизических данных, комплексный анализ которых с привлечением современных методик дает возможность разработать глубинную модель земной коры района Авачинско-Корякской группы вулканов и протекающих здесь геодинамических процессов.
Сейсмологические исследования
Рис. 6 |
Результаты сейсмологического "просвечивания" литосферы под Авачинско-Корякской группой вулканов позволили предположить существование на глубинах 20-90 км одной или двух неоднородностей, обусловивших затухание сейсмических волн от камчатских землетрясений [10,31,32 и др.]. В области границы М она предположительно имеет вытянутую форму, совпадающую по простиранию с вулканической группой. Согласно нашим построениям, изложенным выше, этот район приурочен к низкоскоростной мантии и располагается в зоне высоких градиентов скорости Vp в верхней коре. Эти данные не противоречат полученным ранее, так как значения скорости под вулканами практически совпадают и сохраняется простирание предполагаемых аномалий затухания и зон высоких градиентов Vp.
Рис. 7 |
В 80-90-е годы в районе Авачинско-Корякской группы вулканов выполнены сейсмические исследования с использованием землетрясений и взрывов [2,8,9,15 и др.]. На сейсмическом разрезе выделены зоны аномальных значений скорости (Vp)и поглощения Р-волн (рис.6). Зона А характеризуется повышенным поглощением высокочастотной части спектра сейсмических сигналов. Подошва этой зоны располагается не глубже, чем 3 км и, очевидно, представлена смесью твердой и расплавленной фаз глубинного вещества. Выделение зоны В обусловлено наличием в нижней части Авачинской депрессии мощного волновода с пониженными (~ на 6% относительно вмещающей толщи пород) значениями скорости Vp. Зона С характеризуется повышенными значениями Vp(до 6,6-6,7 км/c), что может быть связано с глубинной высокоскоростной интрузией. Зона D выделена как область относительно пониженных значений скорости Vpв средней части коры под конусом вулкана. Между зонами D и C отмечено отсутствие отражающих площадок. В целом, распределение отражающих площадок по разрезу различно. В верхней части они залегают согласно сейсмическим границам, а с глубины ~ 10 км - практически выполаживаются. Это соответствует существующим представлениям о природе сейсмических разделов в земной коре и может свидетельствовать о повышенной трещиноватости пород на этой глубине [9,20]. Возможно, выделенная на разрезе зона повышенной скорости в коре - это область, в которой трещины "закрыты" остывшим магматическим расплавом, поступившим сюда из корового магматического очага. На рис.6 также отмечены некоторые особенности сейсмичности района Авачинского вулкана в период его активизации в 1994 и 1997 гг. Из этих данных видно, что основная масса землетрясений происходит в конусе вулкана и в пределах Авачинского грабена до глубины ~ 10 км. Можно предположить, что грабен представляет собой разлом, в котором в настоящее время протекают активные тектонические процессы. Важно отметить, что за рассматриваемый период практически не отмечены землетрясения в нижней части Авачинского грабена. Их основная масса располагается в грабене до глубины ~ 3 км (в частности, за период 1997 г.) и глубже 5-6 км уже в кристаллической коре. Отсюда можно сделать вывод, что в основании грабена существуют какие-то специфические условия, в которых породы находятся либо в состоянии повышенной пластичности, либо трещиноватости с заполнением трещин жидким флюидом. Этим можно объяснить понижение скорости Vp в основании грабена.
Электромагнитные исследования
Рис. 8 |
По данным региональных исследований методами магнитотеллурического (МТЗ) и вертикального электрического (ВЭЗ) зондирований получено представление об обобщенном геоэлектрическом разрезе региона [15]. В верхней части разреза залегают четвертичные вулканогенные и осадочные образования сопротивлением сотни-первые тысячи Ом.м и более, мощностью первые сотни метров. Ниже залегает кайнозойская толща со средним продольным сопротивлением от десятков до первых сотен Омм. Консолидированный фундамент имеет сопротивление тысячи Ом.м. Глубинная часть разреза содержит коровый и астеносферный проводящие слои.
Рис. 9 |
В последние годы в районе Авачинско-Корякской группы вулканов выполнен большой объем более детальных площадных исследований МТЗ, позволяющих получить дополнительную информацию об электропроводности земной коры. Методика и результаты качественной интерпретации МТЗ рассмотрены в [14]. Для изучения глубинной электропроводности использовано около 1000 МТЗ. По данным интерпретации кривых МТЗ получена карта интегральной проводимости осадочно-вулканогенного чехла, перекрывающего кристаллический фундамент (рис.7). На этой карте выделена зона повышенной проводимости, имеющая северо-западное простирание. Ширина зоны меняется от 10 км на юго-востоке до 30 км на северо-западе. Выявленная зона связывается с грабеном, выполненным преимущественно терригенными отложениями. В районе Авачинско-Корякской группы вулканов отмечается максимальная проводимость зоны до 600 См, что может быть обусловлено наличием жидкой фазы (растворов и магматических расплавов). По результатам интерпретации кривых МТЗ составлена также схема глубинной электропроводности исследуемой площади. Последняя районируется на две области с различной электропроводностью земной коры: юго-западную и северо-восточную (рис.8). Первая содержит коровый слой повышенной электропроводности. Вторая отмечается пониженной электропроводностью верхней части коры.
Полученные результаты уточнены с помощью численного двумерного моделирования. Для данной цели выбран профиль АА протяженностью около 160 км (рис.9). Он ориентирован примерно вдоль СФЗ. Из рисунка видно, что в юго-западной части выделяется коровый слой повышенной электропроводности сопротивлением 10-20 Ом.м. Кровля слоя поднимается с глубины 25 км на юго-западе до глубины 10 км под современными вулканами. Здесь осадочно-вулканогенный чехол содержит аномалию с пониженным сопротивлением 8 Ом.м до глубины 6 км. Эта аномалия фиксирует грабен, выполненный преимущественно проводящими породами. Современные вулканы приурочены к бортовой части грабена. Земная кора северо-восточной части профиля не содержит коровых проводников. Она отличается повышенным электрическим сопротивлением в районе Шипунского п-ова.
Комплексная интерпретация геолого-геофизических данных
Рис. 10 |
Глубинная геоэлектрическая модель района сопоставлена с графиками поля силы тяжести и теплового потока (рис.9). Высокое электрическое сопротивление верхних частей литосферы на северо-восточном окончании профиля соответствует повышенному уровню поля силы тяжести. Это можно объяснить тем, что в районе Шипунского полуострова верхняя часть земной коры сложена породами с повышенной плотностью. Состав этих пород близок к ультраосновным. В поле силы тяжести в виде аномалий более высокого порядка также проявились структуры верхней части земной коры, сложенные породами, различными по своему фациальному составу и плотности.
По сейсмическим и гравитационным данным с помощью трехмерного гравитационного моделирования получена объемная упруго-плотностная модель (рис.10). Для моделирования использовались материалы гравиметрической съемки, сведения о скоростных и плотностных свойствах пород и их корреляции по данному району и миру [15]. Модель дает представление о строении блока литосферы размерами 70х70х50 км. В верхней части земной коры выделена отрицательная интенсивная аномалия северо-западного простирания, фиксирующая Авачинский грабен. Эта аномалия продолжается до глубины ~30 км. С увеличением глубины форма аномалии становится более изометрической. При этом простирание изолиний меняется от северо-западного в верхней коре до субмеридианального - в нижней, и северо-восточного - в верхней мантии. Коровая аномалия пониженных значений упруго плотностных свойств в общих чертах соответствует коровой аномалии повышенной электропроводности. По-видимому, аномалии отражают существование в земной коре разлома, насыщенного жидкими флюидами. В осадочно-вулканогенном чехле он выражен в виде грабена, заполненного мощной толщей слабоуплотненных, низкоскоростных, проводящих образований. Из упруго-плотностной модели видно, что северо-западную ориентировку имеют только структуры верхних частей земной коры. Верхняя мантия характеризуется северо-восточным простиранием изолиний упруго-плотностных свойств, отвечающим простиранию CФЗ.