Рис.5 |
Косейсмические скачки и монотонные постсейсмические сигналы явно видны на большей части графиков. На графиках для станций KBG, KLU, ESSO и TIG можно также заметить пресейсмические сигналы, хотя они выражены не столь ясно. Для оценки величины косейсмических скачков мы использовали два подхода. В первом подходе величину скачка рассчитывали как разность двух "стандартных"оценок, (каждая из которых основана на стандартном 24-х-часовом интервале 00ч-24ч UT), по двум интервалам, прилегающим к интервалу, который содержит момент землетрясения 5 декабря 1997 г. Данные самого этого интервала отбрасывались. Этот подход использует стандартную обработку данных, однако отбрасывание данных, ближайших к сильному событию, нежелательно. Чтобы избежать этой трудности, применялась и другая процедура, когда величина скачка вычислялась по оценкам, которые основываются на двух непосредственно прилегающих друг к другу нестандартных, сдвинутых 24-х-часовых интервалах (12ч-12ч UT). В этом случае момент сильного землетрясения (11ч23м UT) почти совпадает с границей между интервалами (12ч UT). Для расчета оценок в этом случае в процессе обработки данных производилась экстраполяция эфемерид орбит спутников на 12 часов. Эти два подхода дали достаточно близкие результаты (табл.1). Для окончательных оценок косейсмического скачка используются результаты второй процедуры.
Рис. 6 |
Чтобы дать численные оценки пресейсмического и постсейсмического сигналов, использовали следующий подход. Сначала путем визуального просмотра данных было обнаружено, что для большинства пресейсмических сигналов можно выбрать общую длительность около 15-20 дней. Подобным же образом для постсейсмических сигналов можно было выбрать также общую длительность (неожиданным образом) той же величины - 15-20 дней. Надо сказать, что такой выбор не является вполне однозначным. Например, для KLU, KBG и BKI можно выбрать приблизительно 25-дневную длительность пресейсмического сигнала. В то же время для ESSO и KLU можно выбрать для постсейсмического сигнала длительность порядка 35 дней. Тем не менее, мы полагаем, что выбранный нами вариант (общий для всех станций) является приемлемым. Для численной оценки амплитуд пресейсмического и постсейсмического сигналов были выбраны базовые временные интервалы на каждом графике, до или после сигнала соответственно. Медианные уровни для этих интервалов, указанные жирными горизонтальными линиями на рис.6, были выбраны как отсчетный уровень для численной оценки сигнала. На этой основе были определены амплитуды и длительности каждого пресейсмического и постсейсмического сигнала. Табл.2 дает нашу характеристику вида постсейсмических и пресейсмических сигналов (монотонный, импульсного вида, сложный или же отсутствует) и их численные параметры. Мы также сравниваем знаки пресейсмического и постсейсмического сигналов со знаком косейсмического скачка. Можно видеть прекрасное согласие для постсейсмического сигнала, в то время как для пресейсмического сигнала корреляции не видно. Мы также приводим значение полного скачка, определенного как разность упомянутых выше базовых уровней. Для канала TIG-E мы рассматриваем сигнал как слишком зашумленный для получения каких бы то ни было надежных оценок; для этой станции амплитуда косейсмического скачка пресейсмического и косейсмического сигнала принята условно равной нулю.
Анализ результатов
Средние скорости
Рассмотрим значение средних скоростей (табл.1). Следует отметить, что оценка скоростей для периода перед землетрясением приведена только для станций KLU и KMS. Для KMS не заметно ни косейсмического скачка, ни изменений скорости для периода перед и после землетрясения, поэтому мы приводим единую оценку по всему временному интервалу. Для KLU надо отметить различие скоростей для периодов перед и после землетрясения. Но основной объем данных о скоростях относится к периоду после землетрясения. Векторы скорости для этого периода были пересчитаны с использованием станции TIG в качестве фиксированной точки, и соответствующие векторы изображены на рис.1. Если сопоставить наблюдаемую картину с известными представлениями о структуре плит вокруг Камчатки, можно прийти к следующим предварительным заключениям:
1. Относительная скорость для пары точек KMS и TIG может быть связана с движением Североамериканской плиты относительно плиты Охотии; характер этого движения - почти чистое сжатие по направлению ЮЗ-СВ со скоростью около 1,8 см/год. Станция TIL очень близка к границе Североамериканской и Берингийской плит, и оценки жесткого перемещения плит, которые могли бы быть получены на основе пары TIL-TIG, могут быть искаженными. Все же, используя формально TIL как точку для плиты Берингия, по данным пары TIG-TIL можно оценить движение Берингии относительно Охотии как чистое сжатие со скоростью примерно 0,7 см/год по направлению ВЗ. Для пары TIL-KMS относительное движение характеризует перемещение Североамериканской и Берингийской плит, оно имеет характер косого сжатия со скоростью около 1,2 см/год по направлению СЮ.
2. Вектор перемещения станции BKI относительно TIG или TIL, в общем, соответствует тому, которое можно ожидать качественно на основе представления об упругой реакции плиты Берингия на ее сцепление с Тихоокеанской плитой (каплинг). А именно, край плиты Берингия увлекается в направлении ЗСЗ, и это перемещение имеет характер сдвига, причем, скорость перемещения близка к половине относительной скорости этих плит, равной приблизительно 8 см/год
3. Подобным же образом приблизительно одного характера перемещения станций PETP, MA1 и KBG по отношению к TIL качественно согласуется с тем, что можно ожидать на основе представлений об упругой реакции плиты Охотия на ее сцепление (каплинг) с субдукцируемой Тихоокеанской плитой. А именно, имеет место увлечение края плиты в направлении ЗСЗ, и характер деформации здесь - сжатие. Для станций KLU и ESSO относительное движение по отношению к TIG меньше и не имеет систематического характера; этот факт, в общем, согласуется с тем, что, исходя из упомянутой идеи каплинга, здесь следует ожидать намного меньшие амплитуды движения.
4. В конце 1997 г. имело место существенное и достаточно надежно определенное изменение скорости на станции KLU. Подобное же изменение, похоже, имело место и для станций ESSO, BKI и KBG, но оно не зафиксировано с достаточной уверенностью. С другой стороны, подобных изменений для станции KMS не наблюдается. (Напомним, что все движения на рис.2 определены относительно станции PETP). Характер отмеченных вариаций наводит на мысль, что все они связаны с сильным землетрясением 5 декабря 1997 г. Предварительно их можно ассоциировать с изменением характера каплинга Тихоокеанской плиты относительно плит Охотия и Берингия. Другое возможное объяснение - это различие между скоростью деформации края плиты для случаев почти полностью релаксировавшей, эффективно-вязкой астеносферы (перед сильным землетрясением) и эффективно-упругой астеносферы (сразу после сильного землетрясения).
Косейсмический скачок
Векторы косейсмического скачка (табл.1) изображены на рис.3 (станция PETP использована в качестве фиксированной точки). На том же графике мы приводим теоретические перемещения, которые были вычислены для упругого полупространства, в котором помещен точечный источник с характеристиками, соответствующими Гарвардскому решению CMT для землетрясения 5.12.1997 (табл.3). Согласие полностью приемлемо. Так же изучалась альтернативная модель протяженного источника, который имитировался сеткой (11x3) точечных источников размером 150x50 км, причем точечные источники были идентичными, а их суммарный тензор совпадал с Гарвардским CMT. При этом протяженный источник располагался вдоль субдукционной нодальной плоскости (N1 в табл.3) землетрясения 05.12.1997, которая падает под Камчатку. Эту нодальную плоскость можно выбрать вполне надежно на основе гипоцентров афтершоков, определенных местной сейсмической сетью. Для этого варианта теоретического источника согласие ожидаемых и наблюденных перемещений несколько хуже, чем для точечного.
Пресейсмический сигнал
Как уже отмечалось, идентификация пресейсмического сигнала на графиках рис.6 не является вполне однозначной: для него нельзя усмотреть единой формы временной функции. Это, скорее всего, означает, что он порожден не единственным источником. Однако тот факт, что удается выделить аномалии с сопоставимой длительностью порядка 15 дней и общим монотонным характером на нескольких каналах, позволяет нам в предварительном порядке считать, что произошло конкретное деформационное событие. В табл.2 приведены амплитуды пресейсмического сигнала, которые были определены относительно надежно для случаев монотонного пресейсмического сигнала, а также для случаев импульсного пресейсмического сигнала с сопоставимой длительностью. Для канала TIG N мы используем амплитуду монотонного пресейсмического сигнала с длительностью порядка семи суток. Картина векторов смещений дана на рис.4. Видно, что хотя станции с большими амплитудами пресейсмического сигнала примерно те же самые, что и с большими косейсмическими амплитудами, ориентация векторов совершенно иная.