Смекни!
smekni.com

Бураковско-Аганозёрский расслоенный массив Заонежья (стр. 4 из 6)

Присутствие магнетита в верхних частях разреза позволяет предполагать "умеренно окислительные" условия формирования последовательности пород, которые отвечают небольшому окислению железа в расплаве (10-15 отн.%) и характеризуются интервалом буферных равновесий примерно от QFM-1 до QFM [30]. Такая неопределенность оценки летучести кислорода незначительно сказывается на составе модельного оливина и приводит к погрешностям не выше 0.5 мол.% Fo [2]. При проведении вычислений значения fO2 задавались в соответствии с буферным равновесием вюстит-магнетит (WM), которое близко к нижнему пределу вероятного диапазона редокс-условий.

Отсутствие гидроксил-содержащих минералов даже в поздних кумулятивных парагензисах [1] указывает на то, что с ранних до заключительных стадий накопления кумулата исходный расплав был недосыщен по содержанию H2O. Вместе с тем о наличии некоторого количества воды в системе свидетельствует присутствие магматических амфиболов и слюд в мезостазисе. Грубую оценку для максимально возможного содержания воды в исходной жидкости можно получить, если принять, что верхние наиболее дифференцированные породы разреза отвечают ~ 80% кристаллизации исходной магмы. Это отвечает пятикратному накоплению H2O в продуктах поздних стадий дифференциации. В случае насыщения остаточной магмы водой при Р=6 кбар содержание H2O в конечном (предположительно "андезито-базальтовом") расплаве составляло бы 8-10 мас.%. Это означает, при отсутствии признаков насыщения водой конечных продуктов содержание H2O в исходном расплаве не могло превышать 1.6-2.0 мас.%. По нашим оценкам на основе экспериментальных данных такие содержания воды приводят к понижению ликвидусной температуры оливина примерно на 30-40

С [31]. Таким образом, масштабы этого эффекта не сильно выходят за пределы точности ЭВМ-модели КОМАГМАТ, что оправдывает последующие расчеты ликвидусных полей для оливина в сухих условиях.
Рис.6

Выбор образцов. Краевая группа плутона характеризуется широким набором дифференциатов и, как следствие, большим диапазоном вариаций содержаний петрогенных компонентов. Распределение главных породообразующих элементов в породах Краевой группы приведено на Рис. 6. На серии графиков представлены составы пород группы, вскрытых как на Аганозёрском, так и на Шалозёрском блоках. Для целей геохимической -термометрии главный интерес представляют дуниты и пойкилитовые перидотиты как наименее дифференцированные. Эти породы содержат от 25 до 45 мас.% MgO и при близких значениях магнезиальности характеризуются значительным разбросом содержаний FeO, CaO и SiO2. Вероятно это связано с неизохимичностью процессов серпентинизации. Поэтому для термометрических расчётов следует выбирать образцы с наименьшими вторичными изменениями: такие породы вскрыты глубокими скважинами 20 и 67. Для последующих вычислений были отобраны 9 составов (Табл.1, ан. 1-9), представляющих 4 образца из скв.20 и 5 образцов из скв. 67. Характерно, что на графиках (Рис. 6) фигуративные точки их составов "выстраиваются" в сублинейные тренды.

По нашему мнению, природа этих трендов не связана с кристаллизационным фракционированием Ol и обусловлена различиями первичных пропорций оливиновых кристаллов и магматической жидкости в кумулатах Краевой группы. Эта ситуация отвечает условиям применимости метода геохимической термометрии, когда валовый состав каждой породы можно выразить как комбинацию комплементарных количеств Ol и исходного расплава при одной и той же температуре (см. выше).

Контроль состава первичного оливина. Если принять, что составы оливина и интеркумулусной жидкости в "наименее дифференцированных" породах Краевой группы отвечают интрателлурическим кристаллам и исходному магматическому расплаву, то имеется возможность оценить (проконтролировать) состав первичного Ol, не привлекая данные микрозондовых анализов или результаты моделирования фазовых равновесий. Этот простой графический подход основан на условии сохранения баланса масс, которое позволяет рассматривать произвольные продукты смешения двух крайних компонентов вдоль линии, соединяющей их составы на вариационных диаграммах. Одним из компонентов является исходный расплав (состав которого заранее не известен), а другим - оливин, в отношении состава которого можно сделать реалистичный прогноз. Этот минерал более чем на 99% сложен MgO, FeO и SiO2 [5], поэтому на графиках содержаний этих компонентов составы стехиометричных оливинов формируют линию, отвечающую переходу от крайнего магнезиального члена (Fo) к железистому (Fa). На Рис. 6 крестиками показан отрезок этой линии, включающий вероятный диапазон составов первичного оливина 80-90 мол.% Fo. Очевидно, что тренд "смешения" и "линия оливина" должны пересекаться в точке, которая отвечает исходному составу Ol, как одного из краевых компонентов.

Для 4-х образцов из скв. 20 (Аганозерский блок) это пересечение указывает на вероятный состав исходного оливина Fo86

0.3. В случае 5-ти образцов из скв. 67 (Шалозерский блок) такой подход дает чуть более магнезиальный состав Fo88
0.6 (погрешности указаны в равномерной метрике). Обе эти оценки близки исходному составу Fo87, который принят на основании микрозондовых данных (см. выше). В дальнейшем, интервал содержаний 87-88 мол.% Fo будет использован в качестве главного критерия поиска температуры и состава исходного магматического расплава по результатам моделирования первичных расплавно-кристаллических равновесий.

Результаты вычислений. Численное моделирование равновесной кристаллизации для 9 выбранных составов (Табл. 1) проводилось в безводных условиях (буферWM, Р=6 кбар) по мере последовательного увеличения закристаллизованности расплава с шагом в 1 мол.%. Расчеты прекращались при содержании 85-90% кристаллов (15-10% "интеркумулусной" жидкости). При этом установлено, что все исследуемые составы имеют сходную последовательность кристаллизации: Ol

высоко-Са Px
Pl
низко-Са Px и близкие температуры "выхода" расплавов на Ol-CPx котектику (1236-1261
С). Изменение фазового состава модельных систем при понижении температуры показано на Рис. 7. По этим данным появление Ol на ликвидусе происходит при 1560-1590оС; CPx начинает выделяться при степени кристаллизации 60-90%. Около 1200оС после раскристаллизации 70-80% расплава к этим минералам "присоединяется" Pl - обр. 20/1627, 67/1050 и 67/1181. Появление низко-Са пироксена отмечено только для одного образца (67/1050).
Рис.7

Тот факт, что расчеты проводились до высоких значений степени закристаллизованности, позволяет проводить сравнение модельных соотношений Ol, CPx и Pl с реальными модальными пропорциями минералов в породах. Как видно из Рис. 7, в шести случаях расчеты дают близкие наблюдаемым соотношения минеральных фаз (прежде всего - Ol и авгита), а для образцов 67/1170, 67/1130 и 67/1181 количество оливина занижается на 10-20 мас.%, что сопоставимо с точностью петрографического анализа. В целом, эти сопоставления показывают, что модель COMAGMAT вполне удовлетворительно предсказывает минеральный состав пород Краевой группы. Заметим также, что стадия кристаллизации, отвечающая переходу системы на Ol-CPx котектику (1236-1261

С), может быть принята за нижнюю (минимальную) оценку вероятной температуры внедрения исходной магмы, которая не была насыщена в отношении клинопироксена.