Парагенезисы минералов-вкрапленников
Рассмотрев особенности морфологии и составов минералов-вкрапленников и микролитов, можно констатировать, что для всех вулканитов изученного разреза, кроме самых нижних горизонтов риодацитов первой толщи, в целом свойственен неравновесный набор вкрапленников: биотит + железистая низкоглиноземистая роговая обманка + магнезиальная высоглиноземистая роговая обманка + железистый ортопироксен + магнезиальный ортопироксен + кислый плагиоклаз + основной плагиоклаз.
Все эти минералы могут присутствовать в одном образце породы. Следует отметить также, что: 1) в риодацитах присутствуют только плагиоклазы и биотиты; плагиоклазы имеют кислый - средний состав в объеме всего кристалла (подтип Iа), и только в верхнем горизонте риодацитов появляются средние - основные плагиоклазы с прямой зональностью (тип II); 2) в дацитах кислые плагиоклазы являются реликтовыми фазами - они имеют резорбированный облик и часто сохраняются только в оболочке внешних зон основного плагиоклаза с обратной зональностью (подтип Iб); 3) основные плагиоклазы с обратной зональностью (типы III и IV) кристаллизовались после кислых плагиоклазов I типа, поскольку содержат их в ядрах своих кристаллов, но до основных плагиоклазов с прямой зональностью V типа, поскольку сами слагают ядра их кристаллов; 4) основные плагиоклазы с прямой зональностью II типа могут быть ксеногенными для дацитового расплава, так как в них на границе ядро - внешние зоны устанавливается резкий скачок составов в сторону снижения анортитового минала.
Петрографическое изучение пород позволило разделить вкрапленники на несколько парагенезисов.
Парагенезис I. Средний и основной плагиоклаз с нормальной зональностью (плагиоклазы IIа и ядра плагиоклазов IIб) + ортопироксен I типа
роговая обманка II типа клинопироксен. Этот парагенезис спорадически фиксируется в дацитах нижних горизонтов и постоянно присутствует в голоценовых дацитах четвертой толщи.Парагенезис II. Кислый (иногда средний) плагиоклаз (зерна Iа, ядра Iб и внешние зоны II типа) + биотит (или роговая обманка I типа). В шлифах четко прослеживается одновременная кристаллизация плагиоклазов I типа и биотита. На верхних горизонтах, в вулканитах посткальдерного комплекса, где биотит исчезает, в виде вкрапленников в большом количестве появляется роговая обманка I типа с относительно низкими содержаниями общего Al и AlIV и низкой магнезиальностью.
Парагенезис III. Основной плагиоклаз с обратной зональностью (III и IV типов, внешние зоны плагиоклаза подтипа Iб, ядра плагиоклазов V типа) + магнезиальный ортопироксен с обратной зональностью II типа. Этот парагенезис впервые появляется в вулканитах верхнего горизонта риодацитов и далее, в дацитах, наблюдается во всем вертикальном разрезе.
Парагенезис IV. Основной плагиоклаз с нормальной зональностью V типа + ортопироксен III типа. Парагенезис встречается в вулканитах практически всех горизонтов.
Парагенезис V объединяет микролиты и каймы плагиоклаза и ортопироксена, выделения ильменита и магнетита и характерен для основной массы пород.
Составы стекол основной массы из риодацитов и дацитов всех толщ представлены в табл. 8. Стекла характеризуются высокой кремнекислотностью. Наиболее кремнекислые стекла установлены в самых основных породах - голоценовых дацитах четвертой толщи, причем и в дацитах других толщ фиксируются составы стекол более кислые, чем стекла риодацитов. В целом, составы стекол основной массы близки к составам расплавных включений (сопоставимой кремнекислотности) из плагиоклазов и кварцев вулканитов Эльбруса [28]. Отличия заключаются, главным образом, в более высоких концентрациях калия в стеклах включений.
Таблица 8
Химический состав стекол из вулканитов Эльбруса
Номеробразца | Номеранализа | SiO2 | TiO2 | Al2O3 | FeO | CaO | Na2O | K2O |
20 | 20 | 77,20 | - | 12,657 | 0,257 | - | 2,847 | 6,812 |
21 | 76,175 | - | 12,779 | 0,513 | 0,402 | 2,796 | 7,075 | |
25 | 9 | 78,48 | 0,32 | 12,2 | 0,34 | 0,89 | 3,11 | 4,61 |
17 | 74,93 | 0,47 | 13,13 | 1,65 | 1,19 | 3,39 | 5,01 | |
26 | 26 | 77,74 | 0,18 | 12,37 | 0,89 | 0,72 | 2,96 | 4,97 |
33 | 78,45 | - | 11,86 | 0,81 | 0,55 | 2,89 | 5,28 | |
43 | 76,55 | 0,21 | 13,21 | 0,9 | 0,93 | 3,4 | 4,76 | |
48 | 15 | 75,775 | 0,29 | 13,377 | 0,983 | 1,19 | 3,548 | 4,684 |
7 | 21 | 74,57 | 0,53 | 13,61 | 1,18 | 1,14 | 3,71 | 5,27 |
6 | 5 | 74,16 | 0,2 | 14,06 | 0,94 | 1,52 | 4,56 | 4,35 |
10 | 8 | 74,89 | 0,25 | 13,99 | 1,05 | 1,67 | 3,87 | 4,2 |
9 | 19 | 76,26 | 0,3 | 12,69 | 1,14 | 0,79 | 3,72 | 4,83 |
40 | 78,31 | 0,21 | 12,61 | 0,94 | 0,93 | 2,29 | 4,54 | |
41 | 77,71 | 0,2 | 12,77 | 1,05 | 0,89 | 2,59 | 4,56 | |
43 | 78,1 | - | 12,86 | 1,22 | 0,96 | 1,98 | 4,69 |
Условия образования парагенезисов
Использование Opx-Cpx, Pl-Hbl, Ilm-Mt геотермометров [20; 32; 22] позволило определить температуры образования некоторых минералов вышеперечисленных парагенезисов. Для плагиоклаза Pl2 и роговой обманки Hbl2 парагенезиса I температура составила 945-906
С; в то же время, интервал совместной кристаллизации орто- и клинопироксенов этого парагенезиса из дацитов четвертой толщи оценен в 750-850 С. Для сосуществующих Pl1 и Hbl1 парагенезиса II из риодацитов температура определена в 892-884 С. Образование микролитов парагенезиса V происходило при температуре около 806 С и фугитивности кислорода +2 lgQFM. Заметим, что температуры гомогенизации расплавных включений в кварце и плагиоклазе дацитов, определенные в работе [28], существенно выше (1100-1170 С), чем оцененные по минеральным термометрам. Заметные расхождения в оценках температур, полученных различными методами, очевидно, требуют специального обсуждения.Рис. 7 |
Вариации составов минералов показаны на рис. 7. Характер изменения основности плагиоклаза и магнезиальности сосуществующих темноцветных фаз из раннего парагенезиса II и позднего парагенезиса IV имеет нормальный тренд фракционной кристаллизации, возникающий при остывании расплава (рис. 7).
Сосуществующие пары минералов: 1, 2 - парагенезис I: 1 - Opx1+Pl2, 2 - Hbl2+Pl2; 3, 4 - парагенезис II: 3 - Pl1+Hbl1, 4 - Pl1+Bi; 5 - парагенезис III: Pl3,4+Opx2; 6 - парагенезис IV: Pl5+Opx3.
Тренд парагенезиса III имеет также положительный наклон (т.е. сопряженное возрастание основности и магнезиальности фаз), но обратное направление. Такой характер тренда прежде всего свидетельствует о возрастании температуры. Кроме того, следует учитывать, что основность кристаллизующегося плагиоклаза может возрастать при уменьшении литостатического давления [44], и ортопироксен может обедняться Fe за счет сдвига в сторону уменьшения отношения Fe2+/(Fe2++Fe3+) в расплаве при понижении давления [11].
Парагенезис I не обнаруживает определенного тренда: он характеризуется незакономерным разбросом фигуративных точек. Можно полагать, что это отражает процесс изменения вкрапленников парагенезиса I в результате смешения с менее кальциевым и более окисленным расплавом.
Многие андезиты, андезидациты, дациты, особенно в орогенных областях, содержат вкрапленники, состав и морфология которых явно свидетельствуют о неравновесных соотношениях как между собой, так и с вмещающей их основной массой породы. Обратная зональность кристаллов, резорбированные кристаллы, кристаллы с текстурами быстрого роста/растворения (например, ситовидные плагиоклазы), реакционные каймы, одновременное присутствие минеральных фаз, которые не могли равновесно кристаллизоваться из расплава, - основные признаки вкрапленников из таких вулканитов [39; 40; 41; 44; 48; 49; 52; 34]. Описанные выше особенности морфологии, составов и трендов кристаллизации минералов-вкрапленников и их парагенезисов из эльбрусских вулканитов показывают, что они принадлежат к типу вулканитов с ярко выраженными признаками неравновесной кристаллизации на некоторых этапах своего становления.
Полагают, что появление в вулканитах сложных, в том числе неравновесных ассоциаций минералов-вкрапленников связано со смешением расплавов, сильно отличающихся по составу и температуре [41; 44; 35; 52 и др.], либо с их полибарической кристаллизацией при подъеме (декомпрессией) [31; 49; 40]. Также рассматривается модель автосмешения [34], предполагающая смешение кислого расплава из нижней части магматической камеры, разогретого в результате инъекции туда высокотемпературного основного расплава, с более холодным кислым расплавом из верхних горизонтов камеры.
Анализ ассоциаций вкрапленников в эльбрусских вулканитах показывает, что ведущими процессами в эволюции их расплавов, сопровождавшими фракционную кристаллизацию, были смешение контрастных по составу расплавов, автосмешение и кристаллизация расплавов при декомпрессии (подъеме). Рассмотрим некоторые признаки проявления этих процессов.