Таким образом, описанные признаки неравновесной кристаллизации в дацитах Эльбруса характерны как для смешения и автосмешения расплавов и ассимиляции ими твердых фаз, так и для декомпрессии при подъеме расплавов к поверхности. Свидетельством смешения контрастных по составу расплавов является присутствие в одной породе плагиоклазов с кислыми ядрами и основными внешними зонами и плагиоклазов с основными ядрами и кислыми внешними зонами. На процесс разогрева расплава при автосмешении (конвекции в магматической камере) указывает появление безводного парагенезиса III с обратно-зональными основными плагиоклазами ситовидного облика и магнезиальными ортопироксенами. В пользу декомпрессии свидетельствуют: безводные парагенезисы III и IV с основным плагиоклазом и магнезиальным ортопироксеном; появление очень кремнекислых остаточных стекол в дацитах; разложение роговой обманки.
Модель формирования дацитов Эльбруса
Наиболее подробно разработанную модель эволюции и генезиса дацитов Эльбруса, основанную на детальном изучении химизма и минералогии этих пород, предложили В.Г. Молявко с соавторами [18]. Основой этой модели является представление о химически зональном глубинном очаге, расположенном в нижней коре, расплав в котором был дифференцирован от риолита в верхах до дацита в более низких горизонтах магматической камеры. Быстрый подъем расплавов и их дегазация способствовали резорбции ранних вкрапленников, в первую очередь кварца и санидина. Поздние вкрапленники формировались в близповерхностной (2-9 км) камере в нестабильных условиях частых извержений, сопровождавшихся дегазацией и окислением расплавов.
Имеющиеся в нашем распоряжении данные о последовательности излияний, составах пород и минералов позволяют дополнить и уточнить эту модель.
Парагенезис I, содержащий средний-основной плагиоклаз (Pl2) и железистые ортопироксен (Opx1)
роговую обманку (Hbl2) клинопироксен (Cpx), кристаллизовался из расплава предположительно андезитового состава, вероятно, имевшего гибридное (мантийно-коровое) происхождение, как это предполагается в модели В.С. Попова [23; 9]. Содержащиеся в дацитах многочисленные включения основного-среднего составов (от габбронорита до трахиандезита), при преобладании трахиандезитов, представляют продукты кристаллизации этого расплава на разных стадиях его эволюции. Возможно, магма близкого состава изливалась на поверхность в небольших позднеплейстоценовых вулканах-сателлитах рр. Худес и Таш-Тебе докальдерного цикла (табл.9). Плагиоклаз и ортопироксен имеют нормальную зональность, указывающую на кристаллизацию из остывающего расплава. В то же время, эти минералы несут отчетливые признаки дробления, резорбции и реакционных взаимоотношений с расплавом. Можно полагать, что эти вкрапленники попадали в более кислый расплав в результате актов смешения.Парагенезис II, включающий кислый-средний плагиоклаз (Pl1) и биотит (Bi) либо роговую обманку (Hbl1), кристаллизовался из риодацитового расплава. Кристаллизация происходила в камере, по геофизическим данным находящейся на глубине 23-40 км. В очаг кислой магмы произошло поступление более основного расплава (андезитового с парагенезисом I), и последовало смешение этих расплавов.
В качестве кислого конечного члена можно предполагать позднеплиоценовые риодациты г.Тузлук докальдерного цикла, составы которых приведены в табл. 9. На рис. 9 показаны средние составы вулканитов изученных толщ и риодацитов Тузлука и трахиандезитов Худеса и Таш-Тебе. Как видно, распределение микроэлементов в дацитах Эльбруса имеет тот же характер, что и в конечных членах, а уровни их содержаний - промежуточные между таковыми в конечных членах. Как показывают балансовые расчеты методом наименьших квадратов, для образования гибридных дацитовых составов, при смешении риодацитовых (соответствующих риодацитам г. Тузлук) и трахиандезитовых (соответствующих трахиандезитам Худеса и Таш-Тебе) расплавов, при формировании риодацитов первой толщи доля трахиандезитового расплава должна составлять 20%, при формировании дацитов второй толщи 61%, третьей - 62%, четвертой - 68%. Таким образом, в ходе эволюции доля основного расплава, участвующего в смешении, возрастает. Общий источник риодацитов и трахиандезитов, очевидно, отражает подобный вид распределения микроэлементов в них (рис. 9), и процесс в целом носит характер смешения родственных расплавов.
Таблица 9
Химический состав риодацитов Тузлука и трахиандезитов Худеса и Таш-Тебе
(оксиды в мас.%, элементы в г/т)
Оксид,элемент | Номер образца | |||
59 | 75 | 77 | 50 | |
Порода | ||||
риодацит | трахиандезиты | |||
SiO2 | 70,5 | 62,3 | 63 | 63,2 |
TiO2 | 0,5 | 1,0 | 0,87 | 1,08 |
Al2O3 | 14,8 | 15,6 | 16,9 | 15,75 |
Fe2O3 | 0,35 | 0,28 | 2,38 | 2,06 |
FeO | 1,8 | 4,02 | 2,42 | 4 |
MnO | 0,03 | 0,08 | 0,07 | 0,07 |
MgO | 0,91 | 2,56 | 2,21 | 2,57 |
CaO | 2,37 | 4,5 | 2,64 | 2,96 |
Na2O | 3,79 | 3,81 | 4,22 | 3,78 |
K2O | 3,98 | 3,38 | 3,85 | 3,18 |
P2O5 | 0,16 | 0,43 | 0,26 | 0,12 |
H2O | 0,28 | 0,66 | 0,25 | 0,32 |
CO2 | 0,11 | 0,11 | 0,16 | 0,1 |
F | 0,1 | 0,13 | 0,11 | 0,09 |
S | 0,05 | 0,05 | 0 | 0,05 |
Сумма | 99,73 | 98,91 | 99,34 | 99,33 |
Cr | 20 | 79 | 57 | 77 |
Ni | 28 | 60 | 18 | 27 |
Co | 5 | 11 | 11 | 12 |
Sc | 5 | 9 | 9 | 9 |
Rb | 204 | 120 | 128 | 123 |
Cs | 10 | 5 | 5 | 4 |
Ba | 468 | 456 | 495 | 495 |
Sr | 254 | 533 | 439 | 486 |
Ga | 24 | 21 | 28 | 22 |
Ta | 1,20 | 0,98 | 1,08 | 0,94 |
Hf | 5,0 | 6,6 | 6,8 | 6,5 |
Zr | 250 | 547 | 521 | 450 |
Y | 21 | 26 | 28 | 30 |
Th | 26 | 20 | 21 | 18 |
U | 5,8 | 2,9 | 4,2 | 3,0 |
La | 36 | 60 | 54 | 61 |
Ce | 63 | 102 | 96 | 105 |
Nd | 38 | 55 | 48 | 46 |
Sm | 4,9 | 7,5 | 7,1 | 7,2 |
Eu | 0,92 | 1,54 | 1,55 | 1,58 |
Tb | 0,53 | 0,74 | 0,61 | 0,69 |
Yb | 1,46 | 1,68 | 1,55 | 1,96 |
Lu | 0,21 | 0,21 | 0,19 | 0,23 |
Кристаллизация парагенезиса II продолжалась и после смешения, так как минералы этого парагенезиса (с некоторым изменением составов) нарастают на минеральные фазы парагенезиса I.
Рис. 9 |
Парагенезис III, представленный основными с обратной зональностью ситовидным плагиоклазом (Pl4) и непористым плагиоклазом (Pl3), а также магнезиальным обратно-зональным ортопироксеном (Opx2), отвечает разогреву расплава при конвективном теплопереносе нагретым расплавом из нижних частей камеры и быстрому подъему этого гибридного расплава к поверхности и его декомпрессии с возможным перепадом давления до 5 и более кбар. Минералы этого парагенезиса в дацитах характеризуются признаками быстрой кристаллизации: прежде всего, скелетным ростом, зональностью обратного характера в плагиоклазах и в ортопироксенах с монотонным нарастанием основности плагиоклазов и магнезиальности ортопироксенов к краям кристаллов. Появление плагиоклаз-ортопироксеновых реакционных кайм у роговых обманок свидетельствует о неустойчивости и распаде амфибола. Исходя из особенностей поведения плагиоклаза и амфибола при уменьшении давления и потере летучих, модель декомпрессии и дегазации расплава представляется наиболее реалистичной при кристаллизации парагенезиса III.
Парагенезис IV, содержащий основной плагиоклаз с нормальной зональностью (Pl5) и ортопироксен (Opx3), появляется на последнем этапе, когда начинается охлаждение потерявшего летучие расплава в близповерхностных изобарических условиях. Для этого парагенезиса характерны высокомагнезиальные ядра ортопироксенов и высокоанортитовые ядра плагиоклазов (такие, как у внешних зон плагиоклазов и ортопироксенов парагенезиса III) с нормальными трендами изменения составов к краям, указывающими на нормальный ход дифференциации расплава с понижением температуры.
Парагенезис V, включающий микролиты и каймы вкрапленников, вероятно, кристаллизовался уже в поверхностных условиях.
Таким образом, дациты Эльбруса образовались в результате сложных процессов, включавших смешение расплавов (риодацитового и трахиандезитового), конвекционный разогрев и декомпрессию (полибарическую кристаллизацию) при подъеме. Причем, все процессы приводили к возникновению конвергентных "неравновесных" текстур минералов (обратная зональность, скелетный рост и др.).
1. В дацитах Эльбруса присутствует пять равновесных или близкоравновесных парагенезисов минералов-вкрапленников, каждый из которых сформировался на определенном этапе эволюции расплава:
парагенезис I (средний и основной плагиоклаз с нормальной зональностью + железистый ортопироксен с нормальной зональностью
магнезиальная роговая обманка клинопироксен) образовался из андезитового расплава и продолжал кристаллизоваться (средний плагиоклаз, роговая обманка) в гибридном расплаве, при попадании в очаг с риодацитовым расплавом;парагенезис II (кислый, иногда средний плагиоклаз + биотит или железистая роговая обманка) образовался из риодацитового расплава и продолжал кристаллизоваться (средний плагиоклаз, роговая обманка) в гибридном расплаве, при поступлении 20-70% доли андезитового расплава;
парагенезис III (основной плагиоклаз с обратной зональностью + магнезиальный ортопироксен с обратной зональностью) кристаллизовался на этапе быстрого подъема гибридного расплава к поверхности;
парагенезис IV (основной плагиоклаз с нормальной зональностью + магнезиальный ортопироксен с нормальной зональностью) сформировался в близповерхностных условиях из дегазированного гибридного расплава;
парагенезис V (микролиты и каймы вкрапленников) образовался при излиянии гибридного расплава на поверхность.
2. Эволюцию дацитов Эльбруса можно объяснить, используя модели смешения и разогрева расплавов в магматической камере и декомпрессии (полибарической кристаллизации) при подъеме.
3. Минералы-вкрапленники вулканитов несут петрогенетическую информацию, позволяющую расшифровать даже весьма сложную историю формирования пород.