Смекни!
smekni.com

Некоторые особенности формирования подводных каньонов на континентальном склоне Восточной Камчатки (стр. 3 из 4)

Механизм роста каньонов и формирования подводных оползней

Представляется очевидным, что в пределах авандельты р.Камчатка на шельфе Камчатского залива и в северной части Авачинского залива значительные объемы осадочного материала верхней части разреза находятся в состоянии неустойчивого динамического равновесия, которое постоянно нарушается в результате региональной сейсмической активности и геологических явлений, способствующих дестабилизации осадочных тел. Не останавливаясь в данной работе на вопросах классификации и номенклатуры подводных оползней, подробно рассмотренных в ряде работ [14,18,30], отметим, что в исследуемом районе в подавляющем большинстве случае встречается оползание слабо- и неконсолидированных осадков с поверхностью скольжения, субпараллельной склону (трансляционные оползни или slump). По-видимому, можно говорить о том, что в ряде случаев разжижение и насыщение флюидами неконсолидированных оползающих осадков привели также к формированию турбидитных потоков и подводных лавин.

Геологическую ситуацию, благоприятную для развития оползневых явлений на склоне Камчатского каньона можно проиллюстрировать на примере фрагментов сейсмограмм (см. рис.3). В строении склонов, обрамляющих каньон, обращают на себя внимание две характерные особенности. Первая - в сейсмическом изображении уверенно читаются тектонические нарушения, которые совершенно не выражены в рельефе морского дна. Вторая - наличие нескольких восстающих выклинивающихся пластов, перекрытых слоем осадков переменной мощности. К участкам выклинивания пластов и к зонам тектонических нарушений приурочены цепочки газовых просачиваний различной интенсивности, которые уверенно фиксируются на записях эхолота в виде гидроакустических аномалий. Анализ сейсмограмм свидетельствует о том, что цепочки газовых выходов маркируют зоны формирований стенок отрыва оползневых тел. Именно на указанных участках морского дна через неконсолидированные песчано-глинистые осадки проникает метан, формируя на поверхности небольшие постройки конической формы [34].

Рис. 8

Кинематику процесса формирования и перемещения оползней в каньонах Камчатского залива моделирует блок-схема на рис.8. В строении осадочной толщи исследуемого района отчетливо проявлен генерализованный трехслойный разрез разнокомпетентных осадков (рис.8а). Верхний слой - это пачка переслаивания неконсолидированных осадков, которая формируется в режиме лавинного осадконакопления и динамически наименее стабильна [21]. Средний слой представлен горизонтами, сложенными плотными глинами (высокоамплитудная граница на сейсмограммах). Нижний слой слагает песчано-глинистая толща с высокой газонасыщенностью, которая на отдельных участках на склонах каньонов подвергается воздействию разгружающихся грунтовых вод и, следовательно, подвержена разрушению.

Голоценовые экзогенные процессы (в том числе гравитационно-оползневые) в исследуемом районе протекают на фоне общей деструкции осадочной толщи тектоническими процессами, проявившимися в развитии субмеридионально ориентированных структур растяжения. При тектонических подвижках в толщах неконсолидированных осадков верхнего слоя образуются трещины отрыва, по которым в дальнейшем развиваются листрические сбросы (рис.8б,8в), ограничивающие блоки осадочного материала различной формы и объема. Блоки постепенно проседают и, в зависимости от гравитационной устойчивости склонов, могут приходить в движение даже при небольшом внешнем воздействии (рис.8г). Такими факторами внешнего воздействия, служащими спусковым механизмом ("триггером") для инициации перемещения оползневых тел, могут стать: землетрясения и вызванная ими тиксотропия, глубинная эрозия в каньонах, перегрузка склонов при высокой скорости осадконакопления, прогрессирующий крип и т.д. [14,18,30]. Особо следует сказать о геологических "триггерах", столь ярко проявленных в районе исследования: переслаивании в разрезе компетентных и некомпетентных пород, их наклон по падению склона, флюидонасыщенность осадков, разгрузка грунтовых вод на склоне ("родниковый подмыв").

Рис. 9

Поверхностью скольжения оползающих блоков является подошва слоя плотных глин, под которым залегает своеобразная "смазка" - слоя ожиженных газонасыщенных осадков. На скорость вдольсклонового перемещения оползневых тел будут оказывать влияние различные факторы, среди которых главный - угол наклона второго "бронирующего" слоя. Кроме того, большую роль будет играть местоположение оползающих масс относительно бортов и дна каньона. В частности, Ломтевым [13-15] описаны "висячие" оползневые блоки объемом в десятки куб. км и протяженностью по фронту 10-20 км, поверхность скольжения которых при угле наклона >10o-30o выходит на склонах каньона на высоте 100-150 м над дном. Фрагмент аналогичного оползневого тела (правда, меньшего объема) отчетливо виден на сейсмограмме, на рис.2.

Кроме того, механизм формирование эрозионных врезов в зонах разгрузки грунтовых вод иллюстрирует рис.9.

Дискуссия

Специальный интерес представляет возможная связь оползневых процессов на склонах подводных каньонов (и, в частности, в Камчатском заливе) с формированием волн цунами. В научной литературе имеется большое количество упоминаний о цунами, генерирующим источником которых предполагаются подводные гравитационно-оползневые процессы (например, [1,2,9,12,16,29,32 и др.]). По некоторым оценкам волны "гравитационного" генезиса составляют до 10-15% от общего количества цунами [5]. Принципиальная возможность возникновения цунами вследствие подводных оползневых процессов и вызванных ими мутьевых и турбидитных потоков рассмотрена на примере нескольих математических моделей [1,2,5] и показана в модельном эксперименте [19,35]. В то же время, несмотря на интерес, проявляемый к цунами, проблема генерации волн "нетрадиционными" источниками относится к малоизученным, и ее рассмотрение на примере детально исследованных участков морского дна способно внести ясность в решение спорных вопросов.

Не останавливаясь здесь на рассмотрении известных моделей возбуждения и распространения волн, отметим, что эти вопросы являются ключевыми для разделения гигантских волн на "удаленные или собственно цунами-волны", спровоцированные крупными землетрясениями и имеющие региональное распространение, и "бухтовые заплески или локальные цунами", среди причин возникновения которых - рассматриваемые в данной статье обвально-гравитационные процессы в подводных каньонах на малых глубинах. Несмотря на локальный и, как правило, узконаправленный характер распространения волн второго типа, их последствия могут иметь катастрофические масштабы [12,31].

При допущении того факта, что подводные оползневые процессы являются генерирующим источником локальных волн цунами, возникает ряд принципиальных вопросов, связанных с характером оползания осадочного материала и, в первую очередь, со скоростью перемещения оползневых тел на стенках и бортах подводных каньонов и причинами, снижающими трение в подошве оползня. Попытка определения граничных значений скорости вдоль склонового перемещения оползней фиксированного объема, необходимых для возбуждения поверхностных волн, является чрезвычайно сложной задачей с большим количеством участвующих факторов. Тем не менее, упрощенные расчеты для систем с ограниченным количеством переменных [1,2] показывают принципиальную возможность генерации цунами при движении оползневых и обвальных масс со скоростями, реализуемыми в реальной среде. Что касается геологических причин, благоприятствующих протеканию цунамигенерирующих литодинамических процессов в исследуемом районе, они подробно изложены выше. Суммируя, можно предполагать, что в осадочном чехле Камчатского залива главной причиной, приводящей к снижению трения в подошве склоновых оползней, является высокая газонасыщенность подстилающих осадков.

Возникшие в результате обвала даже сравнительно небольшие по амплитуде волны цунами при движении по мелководью шельфа могут достигать значительной высоты [32]. Кроме того, нельзя исключить фокусирующего эффекта для волны цунами в верховьях каньонов, которые расположены на мелководье в шельфовой зоне.

Учитывая тот факт, что прилегающие к изученной части залива участки побережья (на которых, в частности, расположен пос.Усть-Камчатск) представляют собой низменность, осложненную небольшими холмами, можно предполагать значительный заплеск возникших волн цунами. Возможный волногенерирующий эффект подводных сейсмооползневых процессов в Камчатском заливе и количественные оценки их цунамиопасности для прибрежных районов рассматриваются автором в другой работе.