Каждое зерно оливина с расплавным включением, прошедшее закалку, и отобранное для исследования участвовало в следующих стадиях обработки:
Зерна индивидуально заливались эпоксидной смолой в отдельные столбики диаметром ~5мм и высотой ~1мм и оставлялись на несколько суток застывать. В итоге получался эпоксидный столбик с зерном на поверхности.
Каждый столбик с торца без зерна полировался шкуркой #1000 для того, чтобы через него нормально проходил пучок света, и возможно было рассматривать зерно оливина на другой стороне столбика в проходящем свете на поляризационном микроскопе.
Со стороны с зерном полировка производилась более тщательно и внимательно. Необходимо было немного приполировать поверхность, и рассмотреть зерно под микроскопом, для выявления включений и выбора того включения, которое будет выведено на поверхность.
Полировка столбика проводилась до тех пор, пока включение не появиться на поверхности зерна. Данный этап проводиться на шкурке #1200.
После того, как включение появиться на поверхность зерна, полировку надо было продолжать на алмазной пасте 5/7. До тех пор пока вся поверхность образца не станет достаточно ровной и гладкой (насколько позволяет данная паста). Контроль над качеством поверхности, проводился с помощью рудного микроскопа в отраженном свете.
Из отполированных столбиков зерна оливина изымались и выкладывались отполированной стороной на двухсторонний скотч в шашку (данная операция проводилась П.Ю. Плечовым).
Шашка с уложенными зернами заливалась эпоксидной смолой и откладывалась на пару дней для затвердевания эпоксидной смолы.
Затвердевшая шашка вынималась из полимерной оправы, тщательно отмывалась и чистилась, после чего поверхность полировалась на станке.
На готовую шашку напылялсь проводящий слой, для отвода заряда, и шашка была готова к работе на микрозонде.
4. Работа с препаратом на микрозонде.
Основным аналитическим методом изучения химического состава минералов, твердофазных и расплавных включений в них являлся микрозондовый анализ, проводимый при помощи энергодисперсионной микрозондовой приставки LinkSystem к электронному сканирующему микроскопу CamScan4DV кафедры петрологии МГУ. Для химического анализа использовался режим отраженных электронов при стандартном рабочем напряжении 15 кВ. Все фотографии минералов и включений в них выполнены во вторичных электронах при напряжении 20 кВ. При анализе минеральных фаз и расплавных включений определялись основные петрогенные компоненты: Si, Al, Ti, Fe, Mn, Mg, Ca, Na, K, а также анализировались Cr, Ni, P, Cl, S. Минералы анализировались в "точке" (фокусировка пучка - 3х3 микрона), для анализа стекол сканировалась площадка не менее 12 мкм во избежание потери щелочей (K и Na). Относительные ошибки при микрозондовом анализе составляют: при содержании элемента от 1 до 5% - 10% отн., от 5 до 10% - 5% отн., а при содержании более 10% - 2% отн.
Для контроля систематических ошибок измерений микрозонда использовался эталон стекла G30-2. Эталонный химический состав, померенный с помощью более высоко чувствительного метода, и результаты измерений на микрозонде CamScan представлены в следующей таблице:
Образец | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O |
G30-2-1 | 51,24 | 1,70 | 14,90 | 10,22 | 0,28 | 5,76 | 10,91 | 3,24 | 0,64 |
G30-2-2 | 51,67 | 1,74 | 14,79 | 10,41 | 0,15 | 5,91 | 11,00 | 2,78 | 0,59 |
G30-2-3 | 51,66 | 1,83 | 14,60 | 10,46 | 0,12 | 5,92 | 11,00 | 2,74 | 0,67 |
G30-2-4 | 51,51 | 1,76 | 14,65 | 10,56 | 0,09 | 6,16 | 10,86 | 2,96 | 0,61 |
S для p=0.95 | 0,38 | 0,10 | 0,26 | 0,28 | 0,16 | 0,32 | 0,13 | 0,44 | 0,06 |
среднее | 51,52 | 1,76 | 14,74 | 10,41 | 0,16 | 5,94 | 10,94 | 2,93 | 0,63 |
Sr, % отн. | 0,75 | 6,01 | 1,76 | 2,75 | 102,54 | 5,45 | 1,24 | 15,29 | 10,01 |
Эталонный состав G30-2 | 51,52 | 1,61 | 15,21 | 10,07 | 0,19 | 6 | 10,63 | 3,06 | 0,57 |
Таблица 4. В таблице представлены результаты измерения химического состава эталонного образца G30-2 на микрозонде CamScan, а также эталонный химический состав образца. Для серии анализов на микрозонде посчитаны средние значения и случайные ошибки. |
Систематическая погрешность рассчитывалась по формуле:
где Хi - результат i - определения состава методом, i=1,2, , n, Х0 - аттестованное значение химического состава; Значимость систематической погрешности при этом определяется с помощью критерия, , где Sr - относительная случайная погрешность измерений. В результате, чего было установлено, что систематическая ошибка не выходит за допустимые границы.Петрография и минералогия базальтов.
Составы базальтов района г. Терпук приведены в следующей таблице:
N | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | ппп | H2O+ | комментарии |
6,00 | 48,75 | 1,34 | 17,30 | 5,55 | 5,15 | 0,10 | 8,18 | 9,18 | 3,20 | 0,80 | 0,43 | 0,57 | 0,24 | вулк.Терпук, лавовый поток |
103,00 | 49,02 | 1,34 | 17,29 | 6,45 | 3,83 | 0,13 | 8,07 | 9,03 | 3,14 | 0,86 | 0,39 | 0,67 | 0,16 | вулк.Терпук, лавовый поток |
105,00 | 49,23 | 1,37 | 17,50 | 3,73 | 6,27 | 0,08 | 7,87 | 9,31 | 3,20 | 0,86 | 0,37 | 0,53 | 0,14 | вулк.Терпук, лавовый поток |
206/6 | 49,27 | 1,50 | 16,46 | 3,94 | 6,46 | 0,18 | 8,00 | 9,33 | 3,33 | 0,84 | 0,40 | 0,72 | 0,29 | вулк.Терпук, лавовый поток |
207,00 | 48,88 | 1,45 | 17,05 | 3,61 | 6,60 | 0,14 | 7,66 | 9,20 | 3,31 | 0,85 | 0,35 | 0,73 | 0,18 | вулк.Терпук, лавовый поток |
208/1 | 48,70 | 1,30 | 16,43 | 2,96 | 7,61 | 0,57 | 8,25 | 8,97 | 3,42 | 0,90 | 0,40 | 1,00 | 0,16 | вулк.Терпук, лавовый поток |
7,00 | 48,56 | 1,32 | 17,31 | 4,41 | 6,12 | 0,45 | 7,50 | 8,82 | 3,06 | 0,79 | - | 0,90 | 0,30 | вулк.Терпук, лавовое озеро |
07/1 | 48,98 | 1,34 | 17,44 | 3,54 | 6,68 | 0,13 | 8,78 | 8,90 | 3,20 | 0,84 | 0,40 | 0,64 | 0,27 | вулк.Терпук, лавовое озеро |
8,00 | 48,88 | 1,05 | 17,22 | 7,57 | 3,47 | 0,15 | 7,81 | 8,93 | 3,24 | 0,86 | 0,41 | 0,78 | 0,24 | вулк.Терпук, лавовое озеро |
Таблица 5. Выдержка из объяснительной записке к геологической карте 1 : 200 000. В таблице представлены химические составы изверженных пород г. Терпук. |
Описание шлифов.
ПК 02/20 Оливиновый базальт. Структура порфировая, пористая, поры расположена хаотически, размеры 0,2 до 1 мм. Вкрапленники представлены кристаллами оливина и плагиоклаза, также встречаются характерные оливин плагиоклазовые сростки. Текстура основной массы интерсертальная - тонкие лейсты плагиоклаза в стекловатой матрице.
Фотография 6. На снимке изображена часть поверхности шлифа ПК 02/20. Изображение получено с поляризационного микроскопа Option со включенным анализатором и объективом x40. На снимках хорошо видны фенокристаллы оливина и плагиоклаза, на правом снимке представлены оливин плагиоклазовые срастания, в большой кристалл оливина врастают кристаллы плагиоклаза. |
ПК 02/27 Оливиновый базальт. Структура порфировая, пористая, поры расположена хаотически, размеры 0,2 до1,5 мм Вкрапленники представлены кристаллами оливина и плагиоклаза, также встречаются характерные оливин плагиоклазовые сростки. Текстура основной массы интерсертальная - тонкие лейсты плагиоклаза в стекловатой матрице.
Фотография 7. На снимке изображена часть поверхности шлифа ПК 02/27. Изображение получено с поляризационного микроскопа Option со включенным анализатором и объективом x10 на левом снимке и x40 на правом. На левом снимке хорошо виден большой фенокристалл оливина (в верхнем правом углу) с областями резорбции, так же видно, что порода пористая, размеры пор варьируют в широком диапазоне. На правом снимке представлен участок основной массы, сложенной вытянутыми кристаллами плагиоклаза и стекловатым агрегатом между кристаллами. |
Расплавные включения.
Расплавные включения представляют собой участки расплава, захваченные и законсервированные кристаллом в процессе роста или перекристаллизации из-за различных дефектов структуры поверхности (рис. 8). В первую очередь, для образования расплавных включений необходим расплав. Для того, чтобы произошел захват расплавного включения необходим дефект на фазовой границе кристалл-расплав. Наличие дефекта является основным условием образования расплавных включений.
В фенокристаллах оливина из ареальных базальтов г. Терпук наблюдается большое количество расплавных включений. Описание включений приводиться для зерен после закалочного эксперимента.
В зернах оливина из образца ПК 02/20 расплавные включения в основной своей массе представляют стекловатые области нередко с газовыми пузырьками размерами от 10 до 300 микрон. Морфологически можно выделить два типа включений. Первый тип под оптическим микроскопом отличается вытянутыми, каплевидными формами, коричневой окраской, частым присутствием газового пузырька. Второй тип включений обладает более изометричными округлыми формами, светлой прозрачной окраской, отсутствием газового пузырька (см. фотографию 9). Первый тип включений находился во всех изученных зернах. Часто эти включения формируют небольшие 5-10 шт. группы, хотя и встречаются отдельные экземпляры. Присутствует несколько включений с очень большими газовыми пузырьками, занимающими до 80% объема включения. Включения второго типа найдены только в некоторых зернах. Не обнаружено таких многочисленных скоплений этих включений в отличие от первого типа.