Смекни!
smekni.com

Особенности вулканизма и геодинамика области тройного сочленения Буве (стр. 10 из 10)

Непосредственно вблизи тройного сочленения обнаружены базальты аномально обогащенные фосфором и рядом элементов-примесей (Th, Ba, B, Ce), а также радиогенными изотопами. Они резко отличаются по этим параметрам, а также по характеру дифференциации от остальных базальтов района. Одними из наиболее предпочтительных источников вещества, которое может обеспечить такие изотопные метки в данных базальтах, могут быть континентальная мантия или древняя океаническая кора. В ходе сложной геологической предыстории этого региона блоки континентальной мантии или древней океанической коры могли сохраниться среди более молодой океанской литосферы. В районе тройного сочленения эти блоки могли оказаться в зонах аномального разогрева литосферы, в частности, в момент соединения трех спрединговых хребтов в одной точке и быть частично подплавлены.

Выводы

Среди вулканитов района тройного сочленения Буве выделяется шесть основных петро-геохимических групп.

Наиболее распространенным типом являются базальты N-MORB, производные деплетированного мантийного источника, встреченные на всей изученной территории.

Субщелочные вулканиты: гавайиты и муджиериты, - сильно обогащенные литофильными элементами и радиогенными изотопами, слагающие вулканическое поднятие Буве, и близкие к ним базальты и андезито-базальты хребта Шписс, генерированные в обогащенной более глубинной мантии.

Относительно слабо обогащенные базальты (T-MORB), являющиеся продуктами смешения расплавов двух первых типов, распространены в приосевых частях САХ, АфАХ и АмАХ.

Базальты близкие по степени обогащения литофильными элементами-примесями вулканитам хребта Шписс и острова Буве, но более богатые в сравнении с ними калием, фосфором, титаном, хромом. Они развиты в пределах структур растяжения: рифтовая долина АфАХ, грабены Восточной области дислокаций, линейное поднятие между хребтом Шписс и вулканом Буве. Их исходные расплавы, вероятно, формировались из вещества плюмов, растекавшегося от основных каналов и претерпевшего мантийную флюидно-магматическую дифференциацию.

Вулканическая серия от базальтов до липаритов, характеризующаяся низкими содержаниями литофильных элементов и особенно низкой концентрацией титана, распространенная на горе Шона и на других структурах сжатия в пределах Антарктической и Южно-Американской плит вблизи ТСБ. В отличие от четырех предыдущих типов, имеющих толеитовый тренд дифференциации, характеризуется известково-щелочным трендом. Их родоначальные расплавы могли быть также связаны с веществом плюмов, но в дальнейшем испытали интенсивную флюидо-магматическую дифференциацию и ассимиляцию субстрата в условиях закрытых магматических камер на уровне верхней мантии. С другой стороны гора Шона может быть фрагментом древней внутриокеанической островной дуги.

Обогащенные базальты, отличающиеся от других обогащенных типов очень высокими концентрациями фосфора и радиогенных изотопов, слагают тектоническое поднятие вблизи сочленения трех рифтов. Вероятно, на состав их первичных расплавов оказало влияние подплавление блоков вещества, сильно обогащенного радиогенными изотопами (континентальная мантия? древняя океаническая кора?) на участках аномального разогрева литосферы.

Таким образом, основными факторами, определяющими разнообразие составов вулканитов в данном районе, являются гетерогенность мантийных источников, плюмовая активность, сложная геодинамика района тройного сочленения, вызывающая напряженные состояния в прилегающих участках плит и геологическая предыстория региона. Низкая скорость спрединга и, следовательно, недостаточно эффективное перемешивание неоднородного мантийного материала обуславливает сильные пространственные вариации составов базальтов.

Литература

Данюшевский Л. В., Соболев А. В., Дмитриев Л. В., Ортопироксенсодержащие низкотитанистые толеиты - новый тип толеитов океанических рифтов, Докл. АН СССР, 292, (6), 1449-1453, 1987.

Диденко А. Н., Пейве А. А., Тихонов Л. В., Петромагнитные и петрологические вариации вдоль Срединно-Атлантического и Юго-Западно-Индийского хребтов в районе тройного сочленения Буве, Физика Земли, (12), 47-66, 1999.

Дубинин Е. П., Сущевская Н. М., Грохольский А. Л., История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного соединения Буве, Российский журнал наук о Земле, 1, (4), 1999.

Мазарович А. О., Пейве А. А., Зителлини Н., Перфильев А. С., Разницин Ю. Н., Турко Н. Н., Симонов В. В., Аверьянов С. Б., Бортолуци А., Булычев А. А., Гасперини Л., Гилод Д. А., Гладун В. А., Евграфов Л. М., Ефимов В. Н., Колобов В. Ю., Лиджи М., Лодоло Э., Перцев А. Н., Соколов С. Ю., Шуто Ф., Морфоструктура района острова Буве, Докл. РАН, 342, (3), 354-357, 1995.

Пейве А. А., Зителлини Н., Перфильев А. С., Мазарович А. О., Разницин Ю. Н., Турко Н. Н., Симонов В. А., Аверьянов С. Б., Бортолуци Д., Булычев А. А., Гасперини Л., Гилод Д. А., Гладун В. А., Евграфов Л. М., Ефимов В. Н. и др., Строение Срединно-Атлантического хребта в районе тройного сочленения Буве, Докл. РАН, 338, (5), 645-648, 1994.

Пейве А. А., Перфильев А. С., Пущаровский Ю. М., Симонов В. А., Турко Н. Н., Разницин Ю. Н., Строение района южного окончания Срединно-Атлантического хребта (тройное сочленение Буве), Геотектоника, (1), 51-68, 1995.

Пейве А. А., Турко Н. Н., Сколотнев С. Г., Лиджи М., Сущевская Н. М., Фабретти П., Мазарович А. О., Соколов С. Ю., Гилод Д. А., Тройное сочленение Буве, особенности строения и эволюции, Труды ГИН РАН, Вып. 511, Проблемы геодинамики литосферы, c. 91-109, Наука, Москва, 1999.

Пущаровский Ю. М., Тектоника и геодинамика спрединговых хребтов Южной Атлантики, Геотектоника, (4), 41-52, 1998.

Пущаровский Ю. М., Симонов В. А., Пейве А. А., Колобов В. Ю., Тикунов Ю. В, Мельгунов М. С., Взаимосвязь геохимических особенностей базальтов с геодинамическими обстановками в районе тройного сочленения Буве (Южная Атлантика), Докл. РАН, 361, (2), 1-4, 1998.

Симонов В. А., Пейве А. А., Колобов В. Ю., Тикунов Ю. В., Геохимия и геодинамика базитов в районе тройного сочленения Буве, Южная Атлантика, Петрология, 8, (1), 38-52, 2000.

Сколотнев С. Г., Вторичные преобразования базальтоидов Ключевской группы вулканов, В сб.: Минеральные преобразования пород океанической коры, 241 c., Наука, Москва, 1984.

Сколотнев С. Г., Структурные факторы в истории геологического развития тройного сочленения Буве (Южная Атлантика), Геотектоника, 2000.

Сущевская Н. М., Коптев-Дворников Е. В., Хворов Д. М., Мигдисова Н. А., Пейве А. А., Сколотнев С. Г., Беляцкий Б. В., Каменецкий В. С., Особенности процесса кристаллизации и геохимии толеитовых магм западного окончания Африкано-Антарктического хребта (хребет Шписс) в районе тройного сочленения Буве, Российский журнал наук о Земле, 1, (3), 221-251, 1999.

Фролова Т. И., Бурикова И. А., Гущин А. В., Фролов В. Т., Сывороткин В. Л., Происхождение вулканических серий островных дуг, 275 c., Недра, Москва, 1985.

Apotria T. G. and Gray N. H., Absolute motion and evolution of the Bouvet triple junction, Nature, 316, (6029), 623-625, 1985.

Apotria T. G. and Gray N. H., The evolution of the Bouvet triple junction: implications of its absolute motion, Tectonophysics, 148, (3/4), 177-193, 1988.

Cande S. C. and Kent D. V., Revised calibration of geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, (B4), 6093-6095, 1995.

Carrara G., Bortoluzzi G., Zitellini N., Bonatti E., Brunelli D., Cipriani A., Fabretti P., Gasperini L., Ligi M., Penitenti D., Sciute F., Mazarovich A., Peyve A., Turko N., Skolotnev S. and Gilod D., The Bouvet triple junction region (south Atlantic): a report on two geological expeditions, Giornale di Geologia, 59, Ser 3a, (1-2), 19-33, 1997.

Dick H. J., Fisher R. L. and Bryan W. B., Mineralogic variability of the uppermost mantle along mid-ocean ridges, Earth Planet. Sci. Lett., 69, (1), 88-106, 1984.

Dickey J. S., Frey F. A., Hart S. R. and Watson E. B., Geochemistry and petrology of dredged basalts from the Bouvet triple junction, South Atlantic, Geoch. Cosmochim, 41, 1105-1118, 1977.

Green D. H., Hibberson W. D. and Jaques A. L., The Earth: Its origin, structure and evolution, Acad. Press. London, p. 265-290, 1979.

Klein E. M. and Langmuir Ch. H., Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, (B8), 8089-8115, 1987.

Kleinrock M. C. and Morgan J. P., Triple Junction reconstruction, J. Geophys. Res., 93, (B4), 2981-2996, 1988.

Kurz M. D., Le Roex A. P. and Dick H., Isotope geochemistry of oceanic mantle near the Bouvet triple junction, Geoch. Cosmochim., 62, (5), 841-852, 1998.

La Brecque J. L. and Hayes D. E., Seafloor spreading history of the Agulhas basin, Earth Planet. Sci. Lett., 45, 411-428, 1979.

Le Roex A. P. and Erlank A. J., Quantitative evaluation of fractional crystallization in Bouvet island lavas, J. Volcan. Geotherm. Res., 13, 309-338, 1982.

Le Roex A. P., Dick H., Erlank A. J., Reid A. M., Frey F. A. and Hart S. R., Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 Degrees East., J. Petrol., 24, Part 3, 267-318, 1983.

Le Roex A. P., Dick H., Reid A. M., Frey F. A. and Erlank A. J., Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume, Contrib. Mineral. Petrol., 90, 367-380, 1985.

Le Roex A. P., Dick H., Gulen L., Reid A. M. and Erlank A. J., Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54,5 S and 51 S: Evidence for geochemical enrichment, Geoch. Cosmochim., 51, 541-555, 1987.

Le Roex A. P., Dick H. J. B. and Watkins R. T., Petrogenesis of anomalous K-enriched MORB from the Southwest Indian ridge: 11o53

E to 14o38
E, Contrib. Mineral. Petrol., 110, 253-268, 1992.

Ligi M., Bonatti E., Bortoluzzi G., Carrara G., Fabretti P., Penitenti D., Gilod D., Peyve A., Skolotnev S. and Turko N., Death and transfiguration of a triple junction in the South Atlantic, Science, 276, 243-245, 1997.

Ligi M., Bonatti E., Bortoluzzi G., Carrara G., Fabretti P., Zitellini N., Gilod D., Peyve A., Skolotnev S. and Turko N., Bouvet triple junction in the South Atlantic: geology and evolution, J. Geophys. Res., 104, (B12), 29,365-29,386, 1999.

Mitchell N. C. and Livermore R. A., Spiess ridge: an axial high on the slow spreading Southwest Indian ridge, J. Geophys. Res., 103, (B7), 15,457-15,471, 1998.

McCulloch M. T. and Gamble J. A., Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, 1991.

Ringwood A. E., Slab-mantle interactions 3, Petrogenesis of intraplate magmas and structure of the upper mantle, Chem. Geol., 82, 187-207, 1990.

Schilling J. G., Tompson G., Kingsley R. and Humphris S., Hotspot-migrating ridge interaction in the South Atlantic, Nature, 313, (5999), 187-191, 1985.

Sclater J. G., Bowin C., Hey R., Haskins H., Peirce J., Phillips J. and Tapscott C., The Bouvet triple junction, J. Geophys. Res., 81, 1857-1869, 1976.

Seyler M. and Bonatti E., Regional-scale interaction in lherzolitic mantle in the Romanche Fracture zone, Atlantic ocean, Earth Planet. Sci. Lett., 146, 273-281, 1997.

Simonov V. A., Peyve A. A., Kolobov V. Yu., Milosnov A. A. and Kovyazin S. V., Magmatic and hylrothermal processes in the Bouvet triple junction region (South Atlantic), Terra Nova, 8, 45-424, 1996.