Смекни!
smekni.com

Мир живого (стр. 5 из 7)

Энергетический метаболизм

Э Я

Специфические ферменты Полимерный синтез

(образование мономолекулярных систем)

Э Я

Редупликация нуклеиновых кислот

Во-вторых, в системе коацерватов происходил и отбор самих нуклеиновых кислот по наиболее удачному сочетанию последовательности нуклеотидов. На этом пути формировались гены. Самовоспроизводящиеся системы со сложившейся стабильной последовательностью нуклеотидов в нуклеиновой кислоте уже могут быть названы живыми.

В проблеме возникновения жизни еще много неопределенного; в целом, конечно же, она еще далека от своего разрешения. Так, например, не ясно, почему все белковые соединения, входящие в состав живого вещества, имеют только “левую симметрию”. Какие механизмы предбиологический эволюции могли к этому привести?

Знание условий, которые способствовали возникновению жизни на Земле, позволяют понять, почему в наше время невозможно появление живых существ из неорганических систем. В нашу эпоху отсутствуют условия для синтеза и усложнения органических веществ: простые соединения, которые могли бы где-то образоваться, сразу же были бы использованы гетеротрофами. Следовательно, теперь живые существа появляются только вследствие размножения. Посредством размножения осуществляется смена поколений и происходит эволюционное развитие.

С возникновением жизни ее развитие пошло быстрыми темпами (ускорение эволюции во времени). Так, развитие от первичных протобионтов до аэробных форм потребовало около 3 млрд. лет, тогда как до возникновения наземных растений и животных с этого момента прошло около 500 млн. лет; птицы и млекопитающие развились от первых наземных позвоночных за 100 млн. лет, приматы выделились за 12 – 15 млн. лет, для становления человека потребовалось около 2 млн. лет.

3.Развитие органического мира

3.1 Основные этапы геологической истории Земли

Итак, жизнь на нашей планете возникла. Каковы же дальнейшие основные вехи в развитии живого?

Прежде чем перейти к рассмотрению развития органического мира, необходимо ознакомиться с основными этапами геологической истории Земли.

Геологическая история Земли подразделяется на крупные промежутки – эры; эры – на периоды, периоды – на века. Выделение этих подразделений связано с событиями, протекавшими на Земле и влиявшими на очертания морей и материков, горообразовательные процессы, изменения климата и т. д. Изменения абиотической среды на могли не сказаться на эволюции органического мира на Земле.

Геологические эры Земли:

· катархей (от образования Земли 5 млрд. лет назад до зарождения жизни)

· архей, древнейшая эра (3,5 млрд. - 2,6 млрд.лет);

· протерозой (2,6 млрд. - 570 млн. лет);

· палеозой (570 млн.-230 млн.лет) со следующими периодами:

1. Кембрий (570млн. - 500 млн. лет);

2. Ордовик (500 млн.- 440 млн. лет);

3. Силур (440 млн - 410 млн. лет);

4. Девон (410 млн. - 350 млн. лет);

5. Карбон (350 млн. - 285 млн. лет);

6. Пермь (285 млн. - 230 млн. лет);

o мезозой (230 млн. - 67 млн. лет) со следующими периодами:

1. Триас (230 млн. - 195 млн. лет);

2. Юра (195 млн. - 137 млн. лет);

3. Мел (137 млн. - 67 млн. лет);

o кайнозой (67 млн. - до нашего времени) со следующими периодами и веками:

1. Палеоген (67 млн. - 27 млн. лет):

а) Палеоцен (67-54 млн. лет)

б) Эоцен (54- 38 млн. лет)

в) Олигоцен (38-27 млн. лет)

2. Неоген (27 млн. - 3 млн. лет):

а) Миоцен (27 - 8 млн. лет)

б) Плиоцен (8- 3 млн. лет)

3. Четвертичный (3 млн. - наше время):

а) Плейстоцен (3 млн. - 20 тыс. лет)

б) Голоцен (20 тыс. лет - наше время)

Разделение на эры, периоды и века конечно же, относительное, потому что резких, с сегодня на завтра, разграничений между этими подразделениями не было. Но все же на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и пр. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны.

3.2. Начальные этапы эволюции жизни

В позднем архее (более 3,5 млрд. лет назад) на дне небольших водоемов или мелководных, теплых и богатых питательными веществами морей возникла жизнь в виде мельчайших примитивных существ – протобионтов, которые питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т. е. были гетеротрофами.

Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет “органического бульона”, возникшего из неорганических систем. Но это не могло длиться долго, ведь такой резерв органического вещества быстро убывал. Первый великий качественный переход в эволюции живой материи был связан с “энергетическим кризисом” : “органический бульон” был исчерпан и необходимо было выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью ферментов. В этой ситуации получили преимущество те клетки, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения.

Такой переход вполне возможен, так как некоторые простые соединения обладают способностью поглощать свет, если они включают в свой состав атом магния (как в хлорофилле). Уловленная таким образом световая энергия может быть использована для усиления реакций обмена, в частности, для образования органических соединений, которые могут сначала накапливаться, а затем расщепляться с высвобождением энергии. На этом пути и шел процесс образования хлорофилла и фотосинтеза. Фотосинтез обеспечивает организму получение необходимой энергии от Солнца и вместе с тем независимость от внешних питательных веществ. Такие организмы называются автотрофными. Это значит, что их питание осуществляется внутренним путем благодаря световой энергии. При этом, разумеется, поглощаются из внешней среды и некоторые вещества - вода, углекислый газ, минеральные соединения. Первыми фотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленые водоросли. Остатки их находят в породах архейского возраста (около 3 млрд. лет назад). В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. В это же время, видимо, появились первые прикрепленные ко дну водоросли.

Переход к фотосинтезу и автрофному питанию был великим революционным переворотом в эволюции живого. И прежде всего, значительно увеличилась биомасса Земли. В результате фотосинтеза кислород в значительных количествах стал выделяться в атмосферу. Первичная атмосфера Земли не содержала свободного кислорода и для анаэробных организмов он был ядом. И потому многие одноклеточные анаэробные организмы погибли в “кислородной катастрофе”; другие укрылись от кислорода в болотах, где не было свободного кислорода, и питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду, получив огромное преимущество в способности запасать энергию (аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные).Благодаря фотосинтезу в каждый последующий этап в органическом веществе, находящемся на поверхности Земли, накапливалось все больше и больше энергии солнечного света. Это способствовало ускорению биологического круговорота веществ и ускорению эволюции в целом.

Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд. лет назад. И привел к важным преобразованиям на Земле: первичная атмосфера земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит и прекратил производство нового “органического бульона”; изменился состав морской воды, он стал менее кислотным. Таким образом, современные условия на Земле в значительной мере были созданы жизнедеятельностью организмов.

С “кислородной революцией” связан и переход от прокариотов к эукариотам. Первые организмы были прокариотами. Это были такие клетки, у которых не было ядра, деление клетки не включало в себя точной дупликации генетического материала (ДНК), через оболочку клетки поступали только отдельные молекулы. Прокариоты - это простые, выносливые организмы, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям природной среды. Но новая кислородная среда стабилизировалась; первичная атмосфера была заменена новой. Понадобились организмы, которые путь были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность и было формирование эукариотов примерно 1,8 млрд. лет назад.

У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосредоточены в ядре клетки. Такая клетка уже воспроизводится без каких-либо существенных изменений. Это значит, что в неизменной природной среде “дочерние” клетки имеют столько же шансов на выживание, сколько их имела клетка “материнская”.

3.3. Образование царства растений и царства животных

Дальнейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Это разделение произошло еще в протерозое, когда мир был заселен одноклеточными организмами.

Растительные клетки покрыты жесткой целлюлозной оболочной, которая их защищает. Но одновременно такая оболочка не дает им возможности свободно перемещаться и получать пищу в процессе передвижения. Вместо этого растительные клетки совершенствуются в направлении использования фотосинтеза для накопления питательных веществ.