5.5.1 Свободный кислород.
Он возобновляется в основном в процессе фотосинтеза растений; в естественных условиях баланс кислорода поддерживается его расходом на процессы дыхания, гниения, образование карбонатов. Уже сейчас человечество использует около 10% (а по некоторым подсчётам – даже больше) приходной части кислородного баланса в атмосфере. Правда, практически убыль атмосферного кислорода пока не ощущается даже точными приборами. Но при условии ежегодного 5 – процентного роста потребления кислорода на промышленно – энергетические нужды его содержание в атмосфере уменьшится, на 2/3, то есть станет критическим для жизни людей через 180 лет, а при ежегодном росте на 10% --уже через 100 лет.
5.5.2 Ресурсы пресной воды.
Пресная вода на Земле ежегодно возобновляется в виде атмосферных осадков, объём которых равен 520 тыс. км3. Однако практически при водохозяйственных расчётах и прогнозах следует исходить лишь из той части осадков, которая стекает по земной поверхности, образуя водотоки. Это составит 37 – 38 тыс. км3. В настоящее время на хозяйственно – бытовые нужды отвлекается в мире 3,6 тыс. км3 стока, но фактически используется больше, так как сюда надо добавить ещё ту часть стока, которая расходуется на разбавление загрязнённых вод; в сумме это составит 8,2 тыс. км3, то есть более 1/5 мирового речного стока. Дополнительные резервы водных ресурсов –опреснение морской воды, использование айсбергов.
5.5.3 Биологические ресурсы.
Они складываются из растительной и животной массы, единовременный запас которой на Земле измеряется величиной порядка 2,4* 1012 тонн (в пересчёте на сухое вещество). Ежегодный прирост биомассы в мире (то есть биологическая продуктивность) составляет примерно 2,3 * 1011 тонн. Основная часть запасов биомассы Земли (около 4/5) приходится на лесную растительность, которая даёт более 1/3 общего ежегодного прироста живой материи. Человеческая деятельность привела к значительному сокращению общей биомассы и биологической продуктивности Земли. Правда, заменив часть бывших лесных площадей пашнями и пастбищами, люди получили выигрыш в качественном составе биологической продукции и смогли обеспечить питанием, а также важным техническим сырьём (волокно, кожи и др.) растущее население Земли.
Продовольственные ресурсы составляют не более 1% от общей биологической продуктивности суши и океана и не свыше 20% от всей сельскохозяйственной продукции.
Из других биологических ресурсов важнейшее значение имеет древесина. Сейчас на эксплуатируемых лесных площадях, составляющих 1/3 всей лесной площади суши, ежегодная заготовка древесины (2,2 млрд. м3) приближается к годовому приросту. Между тем потребность в лесоматериалах будет расти. Дальнейшая эксплуатация лесов должна осуществляться лишь в рамках их возобновимой части, не затрагивая «основного капитала», то есть площадь лесов не должна уменьшаться, вырубка должна сопровождаться лесовосстановлением. Следует, кроме того, повышать продуктивность лесов путём мелиорации, более рационально использовать древесное сырьё и по мере возможностей заменять его другими материалами.
5.5.4 Территориальные ресурсы.
Наконец, несколько слов необходимо сказать о земельных, или, точнее, территориальных ресурсах. Площадь земной поверхности конечна и невозобновима. Почти все благоприятные для освоения земли уже, так или иначе, используются. Остались неосвоенными преимущественно площади, освоение которых требует больших затрат и технических средств (пустыни, болота, и др.) или практически непригодные для использования (ледники, высокогорья, полярные пустыни). Между тем с ростом населения и дальнейшим научно – техническим прогрессом потребуется всё больше площадей для строительства городов, электростанций, аэродромов, водохранилищ, растёт потребность в сельскохозяйственных угодьях, многие площади необходимо сохранить как заповедники и т.д. Всё больше земель «съедают» коммуникации и крупные инженерные сооружения.
6.6 Неисчерпаемые виды ресурсов.
К неисчерпаемым ресурсам относятся те, которые связаны с энергией Солнца и внутренних глубин Земли, силами гравитации (энергия солнечных лучей, ветра, приливов и отливов, климатические ресурсы), а также воды Мирового океана.
6.6.1 Использование энергии приливов.
Под влиянием приливообразующих Луны и Солнца в океанах и морях возбуждаются приливы. Они проявляются в периодических колебаниях уровня воды и в её горизонтальном перемещении (приливные течения).
При расчётах энергетических ресурсов Мирового океана для их использования в конкретных целях, например для производства электроэнергии, вся энергия приливов оценивается в 1 млрд. кВт, тогда как суммарная энергия всех рек земного шара равна 850 млн. кВт. Колоссальные энергетические мощности океанов и морей представляют собой очень большую природную ценность для человека. Начато освоение энергии приливов, сделана попытка применения термальной энергии, разработаны проекты использования энергии волн, прибоя и течений.
6.6.2 Использование энергии волн.
Ветер возбуждает волновое движение поверхности океанов и морей. Волны и береговой прибой обладают очень большим запасом энергии. Каждый метр гребня волны высотой 3 м несёт в себе 100 кВт энергии, а каждый километр- 1 млн. кВт. По оценкам исследователей США, общая мощность волн Мирового океана равна 90 млрд. кВт.
Пока удалось добиться определённых успехов в области применения энергии морских волн для производства электроэнергии, питающей установки малой мощности. Волноэнергетические установки используются для питания электроэнергией маяков, сигнальных морских огней, стационарных океанологических приборов, расположенных далеко от берега, и т.п. По сравнению с обычными электроаккумуляторами, батареями и другими источниками тока они дешевле, надёжнее и реже нуждаются в обслуживании. Такое использование энергии волн широко практикуется, где маяки и другое оборудование получает питание от таких установок. Волновой электрогенератор успешно эксплуатируется на плавучем маяке Мадрасского порта в Индии. Работы по созданию и усовершенствованию подобных энергетических приборов проводятся в различных странах.
6.6.3 Использование энергии солнечного излучения.
На протяжении миллиардов лет Солнце ежесекундно излучает огромную энергию. Около трети энергии солнечного излучения, попадающего на Землю, отражается ею и рассеивается в межпланетном пространстве. Много солнечной энергии идёт на нагревание земной атмосферы, океанов и суши.
В настоящее время в народном хозяйстве достаточно часто используется солнечная энергия – гелиотехнические установки (различные типы солнечных теплиц, парников, опреснителей, водонагревателей, сушилок). Солнечные лучи, собранные в фокусе вогнутого зеркала, плавят самые тугоплавкие металлы. Ведутся работы по созданию солнечных электростанций, по использованию солнечной энергии для отопления домов и т.д. Практическое применение находят полупроводниковые солнечные батареи, позволяющие непосредственно превращать солнечную энергию в электрическую.
7.7 Пути решения проблемы ресурсо-обеспеченности.
Выходом из этой проблемы может быть вторичное использование отходов, экономичное использование воды (опреснение морской воды, использование айсбергов), переход к более долговечным и лёгким материалам (углепластикам). Сторонники защиты окружающей среды призывают индустриальные страны совершить переход от одноразового использования с большим количеством отходов к хозяйству, производящему незначительное количество отходов. Это потребует рециркуляцию и вторичное использование, также привлечения экономических стимулов, определённых действий правительств и людей, а также привлечения в поведении и образе жизни населения Земли.
Реалистичный путь, перспективы решения проблем, связанных с исчерпаемостью земельных ресурсов, прежде всего предполагает перестройку существующего использования земель на научной основе, то есть рациональную организацию территории. Разумеется, рациональная организация территории предполагает и рекультивацию земель, нарушенных предшествующим хозяйственным использованием и интенсификацию сельского хозяйства, и продуманный подход к созданию водохранилищ и многое другое.
Для каждого вида ресурсов должна быть определена оптимальная социальная функция рациональнального использования.
8.8 Заключение.
Я выбрала данную тему реферата, потому что считаю, что проблемы связанные с ресурсообеспечением очень остры в наше время. Как видно из всего сказанного запасы ресурсов истощены. В основном это энергетические ресурсы. Как следствие необходимо обратить внимание к возобновимым источникам энергии. Среди них сейчас наибольшее практическое значение имеет «белый уголь» - энергия водных потоков, однако полное использование гидроэнергоресурсов мира могло бы обеспечить только половину современных потребностей в электроэнергии. Крупнейший возобновимый энергоресурс – лучи Солнца. Теоретически можно ежегодно «перехватывать» почти столько солнечного тепла, сколько содержится во всём ископаемом топливе. Однако практически это неосуществимо из – за малой плотности потока солнечных лучей: солнечные энергетические установки требуют больших площадей. Аналогичным образом дело обстоит с энергией приливов, ветра и внутриземного тепла. Использование этих источников эффективно только в отдельных благоприятных локальных условиях (на побережьях с особо высокими приливами, в районах с устойчивыми сильными ветрами, в местах скопления горячих источников и т.п.). Наибольшие потенциальные возможности таит в себе использование «лёгкого» ядерного топлива – изотопа водорода дейтерия (путём синтеза из него ядер гелия). Хотя этот источник также в сущности невозобновимый, но практически он неисчерпаем, так как полное использование термоядерной энергии в миллионы раз превысило бы эффект всех других реальных энергетических ресурсов. Применение «лёгкого» ядерного топлива станет возможным, когда будут найдены способы управления термоядерной реакцией.
Также существует опасность растраты неэнергетических ресурсов: биологических, минеральных, пресной воды, свободного кислорода.
Главное чтобы люди знали о этой проблеме и старались её решить, а не сидели «сложа руки».
Список используемой литературы.
Ф. Н. Мильков Общее землеведение
Б. С. Залогин Океаны
Б. С. Залогин Океан и человек
М. Р. Плоткин Основы промышленного производства
М. М. Дагаев Астрофизика