В непрерывном производственном контроле наиболее широкое применение нашёл кулонополярографический метод анализа, который осуществляется с использованием стационарных непрерывно действующих приборов, предназначенных для определения газового состава воздуха.
Метод основан на реакции поглащения исследуемого газа в титрационной ячейке. Электрохимическая ячейка является основным узлом газоанализатора, где осуществляется сопоставление исследуемого воздуха с эталонным газом, результаты которого передаются в регистрирующее устройство.
Широкое применение при контроле содержания вредных примесей в атмосфере получили оптические газоанализаторы. По принципу действия они делятся на: абсорбционные, эмиссионные, оптико-аккустические, фотоколорометрические, фотометрические.
Физко-химические методы анализа атмосферного воздуха разнообразны, наибольшее распростронение имеют газохроматографические и масспектрографические методы. Применение этих методов особенно эффективно при определении состава сложных выбросов загрязняющих веществ, они обеспечивают комплексное изучение загрязнителей по всем составляющим инградиентам.
Весьма перспективен электрохимический метод, в котором используются специальные датчики, представляющие собой электрохимический элемент, действующий на принципе процесса электролиза с регулируемым потенциалом при управляемой диффузии.
Всё более широкое применение для контроля атмосферного воздуха получают методы, основанные на использовании лазеров, отличающиеся высокой точностью и быстродействием. Среди них выделяют две группы методов: производящих анализ газов, отобранных в аналитическую кювету и осуществляющих анализ воздуха в открытом пространстве без отбора проб воздуха.
Первый метод основан на явлении резонансного поглащения лазерного излучения в анализируемом газе; спомощью его определяются (без перестройки установки) около 20 поллютантов, в том числе концентрация и дисперсность аэрозоля.
Во втором методе используются эффекты взаимодействия световой волны с воздушной средой: аэрозольное молекулярное рассеяние, спонтанное комбинационное рассеяние, резонансное рассеяние и резонансное поглащение.
В этом дистанционном способе определение состояния воздушной среды используются лазерные локаторы (лидары) в сочетании с лазерами – источниками излучения. На рис.11.1. представленна схема одной из систем лазерного зондирования, применяющаяся для контроля загрязнения надкарьерной атмосферы и обеспечивающая непрерывную регистрацию количества загрязнителей в толще воздушного слоя в пределах до 1,2-2 км.
Экспресс-методами определяют в основном допустимые концентрации загрязняющих веществ на рабочих местах, поэтому приборы отличаются небольшой массой и портативностью.
11.5. Программа контроля экологической безопасности на Мыковском карьере.
А. Для контроля за состоянием воздуха на карьере ежедневно производится отбор проб для анализа воздуха на содержание в нём вредных газов и запылённости в соответствии с «Инструкцией по определению запылённости и загазованности атмосферы карьеров».
Запылённость и содержание вредных примесей в атмосфернов воздухе карьера не должно превышать их нормативных значений, предусмотренных санитарными нормами и «Правилами безопасности при разработке месторождений полезных ископаемых открытым способом».
Б. Для контроля за составом выхлопных газов, выделяемых при работе карьерных машин с двигателями внутреннего сгорания, ежемесячно производится отбор проб газов и их анализ, а также регулировка двигателей с целью снижения выделения вредных газов.
При эксплуатации в карьерах транспортных и технологических машин с двигателями внутреннего сгорания выхлопные газы нейтрализуются до выхода их в воздушную среду путём каталитического окисления вредных компонентов.
Каталитические реакторы устанавливаются в выхлопной системе, которая часто несколько удалена от двигателя в зависимости от конструкции, используется для удаления не только НС и СО, но и NOx.
Для автомобильных транспортных средств используются такие катализаторы, как платина и палладий – для окисления НС и СО. Для уменьшения содержания оксидов азота в качестве катализатора используется родий. Для того, чтобы каталитическое окисление происходило нормально, окисляющие катализаторы требуют некоторого количества кислорода, а восстанавливающие катализаторы некоторое количество СО, НС или Н2 (рис.11.2.).
Эффективность катализаторов может быть снижена присутствием соединений металлов, которые могут поступать в выхлопные газы из топлива, добавок смазывающих материалов, а также вследствии износа металлов. Это явление известно под названием «отравление катализатора».
Особенно существенно понижают активность катализаторов антидетонационные добавки тетроэтил свинцаи, таким образом, по возможности следует использовать бензин без свинца.
Катализаторы из благородных металлов отностительно эффективны при температурах выше 2500 С, что позволяет оптимизировать эффективность работы двигателя в больших пределах.
Что касается дизельных двигателей, то до настоящего времени не существует устройств, которые могли бы осуществлять внешнее подавление их выбросов. А это в первую очередь связано с тем, что выбросы НС и СО у них достаточно малы при процессе горения. Кроме того низкие температуры выхлопных газов по существу исключает применение внешних устройств, действующих непрерывно. Существующая проблема связана с улавливанием части сажи из потока выхлопных газов. Дело в том, что частицы сажи очень малы – диаметр половины из них меньше 0,5 мкм; плотность их тоже очень низка – 0,005 г/см3. Как правило, выход аэрозоля составляет от 0,1 до 0,5 % массы топлива. Следовательно, традиционные фильтры быстро забиваются.
Альтернативой является использование специальных фильтров-ловушек. Они состоят из сеток, выполненных из коррозионностойкой стали, за которыми следует керамический фильтр. В карамическом фильтре имеются блоки, которые можно менять. Таким образом, поток выхлопных газов проходит через пористую структуру, а частицы могут доокислятся, если температура выхлопных газов выше 6000 С, а время пребывания несколько минут.
Снижение вредных выбросов обеспечивается также в результате нормализации режимов работы двигателей, достигаемой при улучшении качества транспортных трасс.
В. Один раз в месяц и после обильных дождей производится анализ сбрасываемой из карьера воды на содержание в ней растворённых частиц (веществ) и минеральных частиц, содержание которых не должно превышать предельно-допустимых концентраций (ПДК).
Г. Контроль за выполнением рекультивационных работ осуществляется сельхозорганами Коростышевского района, а также органами Госнадзорохрантруда Украины.
Д. Контроль за качеством воды в карьере, используемой на хозпитьевые нужды, должен регулярно проводится местными органами санитарного надзора. Периодичность проверки назначается при эксплуатации карьера.
11.6. Комплекс мероприятий по уменьшению выбросов в атмосферу.
Проектом предусматривается два вида мероприятий по уменьшению загрязнения атмосферного воздуха, а именно:
1. Технологические мероприятия.
Технологические мероприятия содержат применение в основном буроклинового способа разделки монолитов на блоки, а также невзрывчатого разрушающего средства НРС.
НРС получают специальным обжигом карбонатных пород с последующим измельчением продукта обжига со специальными добавками. Этот порошкоподобный материал светло-серого цвета , пылеватый, негорючий, взрывоопасный, который имеет щелочные свойства.
Порошок НРС-1 характеризуется стабильностью свойств, длительным сроком пригодности. К недостаткам относят технологическую сложность обжига негашёной извести.
В случае использования НРС камень разрушается без выбросов твёрдых и газоподобных продуктов. При этом отсутствуют звуковые и другие колебания. Невзрывчатое разрушающее вещество используется для отделения монолита от массива.
В объекте, который подлежит разрушению, бурят шпуры, диаметр и глубина которых зависит физико-технических характеристик разрушаемой породы. С увеличением диаметра шпура возрастает разрушающее усилие, но вместе с тем увеличивается вероятность холостого выстрела шпура. Глубина шпура составляет не менее 70% от высоты раскалываемого каменя. Шпур заполняется рабочей смесью на всю глубину.
Готовят рабочую смесь в открытой посуде, к которую вливают строго отмеренное количество воды, после чего в неё постепенно всыпают определённое количество НРС и тщательно перемешивают до получения хорошей текучести, причём длительность перемешивания должна быть не больше 10 минут. Температура воды, которая используется для приготовления раствора НРС, должна быть не больше чем 250 С. Чем холоднее вода, тем дольше рабочая смесь остаётся текучей. Приготовленную рабочую смесь заливают в шпуры.
В начальный период не допускается попадание воды в шпур, залитый рабочей смесью, поэтому рабочую смесь во время дождя защищают от попадания воды. После образования трещены в породе следует распылять воду на поверхность разрушаемого объекта, которая благоприятствует расширению трещин и ускоряет процесс направленного разрушения. В результате химической реакции масса в шпуре расширяется, что и создаёт раскалывающее усилие, которое увеличивается с течением времени. От этого усилия в породе возникают напряжения, которые приводят к созданию трещин, а расширяющее усилие поддерживается после их появления.
Расход НРС на 1 м3 отделяемой породы зависит от её прочности, наличии в ней трещин, объёма отделяемого монолита и его линейных параметров, глубины шпуров, межшпуровых расстояний и других показателей. Эта потеря для разных пород и условий составляет 2…3 кг/м3. Во время работы с НРС важно придерживаться правил техники безопасности.