Смекни!
smekni.com

Оптимизация размещения и порядка бурения многоствольных скважин в процессе мониторинга разработки Кравцовского месторождения (стр. 2 из 2)

В табл. 2 приведены отношения kxv/kz по скважинам, в которых гидродинамические исследования были выполнены с удовлетворительным качеством.

Таблица 2

Модельная проницаемость 0,372 0,239 0,173 0,120 0,301 0,126
Расчетное отношение 1,01 1,03 1,05 8,33 4,14 7,12

Важный вывод заключается в том, что анизотропия по проницаемости - непостоянная величина, а изменяется по площади от 1,01 до 8,33, составляя в среднем 3,8. По расчетам на модели более 90 % нефти вытесняется снизу вверх, т.е. путем подъема ВНК. Под скважинами при этом происходит опережающее продвижение воды вверх - образуются так называемые «гребни обводнения». Они тем резче, чем меньше анизотропия по проницаемости и нефтенасыщенная толщина пласта. Образование гребней обводнения - нежелательный, но неизбежный процесс при эксплуатации скважин в водонефтя-ной зоне (ВНЗ) с депрессиями, превышающими предельные в безводный период эксплуатации. Для условий Кравцовского месторождения предельные безводные депрессии составляют 0,02-0,05 МПа, дебиты скважин при этом не выше 10-20 м3/сут. Добыча нефти при таких дебитах в морских условиях экономически неэффективна, поэтому проектом разработки предусматривается эксплуатация ГС с дебитами 300-500 м3/сут при депрессии до 1 МПа.

Таблица 3

Год Накопленная добыча, тыс. м3 ВНФ,м3/м3 КИН
нефти ЖИДКОСТИ по запасам с учетом текущей нефтенасыщенности
ГС РГС ГС J РГС ГС РГС ГС РГС ГС РГС
2010 347,5 497,5 350,3 579,6 0,01 0,17 0,123 0,176 0,152 0,198
2015 603,3 725,1 827,4 1368,9 0,37 0,89 0,214 0,257 0,253 0,282
2020 720,3 824,6 1304,4 2158,2 0,81 1,62 0,255 0,292 0,297 0,318
2025 789,7 894,8 1781,7 2948,0 1,26 2,29 0,280 0,317 0,321 0,341
2030 838,6 947,1 2258,8 3737,2 1,69 2,95 0,297 0,336 0,337 0,357
2040 914,2 1030,4 3212,9 5315,8 2,51 4,16 0,324 0,365 0,360 0,381
2050 974,4 1090,0 4167,2 6750,5 3,28 5,19 0,345 0,386 0,377 0,398

В условиях образования гребней текущий и конечный КИН зависят от плотности сетки скважин, которую при морской добыче целесообразно увеличивать путем бурения дополнительных стволов скважин (см. рис. 1). Это объясняется тем, что число слотов для бурения скважин в морских условиях ограничивается размерами платформы. Бурение с платформы обусловливает значительные длины стволов скважин вследствие больших отходов их забоев - это второй аргумент в пользу многоствольных скважин.

В настоящее время на месторождении вовлечено в разработку около 70 % запасов нефти, начато бурение краевых скважин и скважин на отдельные поднятия, значительно удаленные от платформы. Бурение этих скважин связано с повышенным риском вследствие меньшей геологической изученности. Одна из задач, решаемых в процессе мониторинга разработки Крав-цовского месторождения, - определение очередности бурения оставшихся восьми проектных скважин на основе оценки технико-экономической эффективности бурения каждой скважины. Разработка месторождения ведется по принципу «нулевого сброса»- вся добываемая жидкость перекачивается на берег. Поскольку по мере обводнения скважин количество перекачиваемой воды увеличивается, а нефти - уменьшается, необходимо оптимизировать порядок разбуривания. Размещение проектных многоствольных скважин приведено на рис. 1.

Методика оценки технико-экономической эффективности заключается в следующем. С применением ПДГТМ был рассчитан базовый вариант разработки, предусматривающий продолжение разработки залежи существующим фондом скважин. Далее рассчитывались варианты, в которых дополнительно к базовому варианту предусматривалось бурение одной проектной скважины различного исполнения. Всего рассчитано 14 вариантов и проведена их экономическая оценка. В качестве основного экономического критерия принят чистый дисконтированный денежный поток (ЧДДПМ), получаемый на эксплуатируемом месторождении за расчетный период его доразра-ботки. Осуществленные затраты в денежных потоках не учитывались. ЧДДПМ сформированы для базового варианта и каждого варианта с бурением скважины. Экономическая целесообразность очередности бурения оставшихся проектных скважин определялась максимальной положительной разностью между ЧДЦПМ по базовому варианту и варианту с бурением скважины. Наибольшая экономическая эффективность в порядке возрастания отмечается при бурении скв. 9 с двумя стволами, скв. 11с тремя стволами и скв. 12с одним и двумя стволами. Эти скважины целесообразно бурить в первую очередь. Бурение двух- и трехствольных скважин в основном выгоднее, чем одноствольных, например, бурение скв. 12 с двумя стволами увеличивает ЧДДПМ на 7,5 % по сравнению с базовым вариантом разработки, в то время как бурение ее с одним стволом повышает ЧДДПМ лишь на 5,8 % по сравнению с базовым вариантом. Технологический эффект от бурения многоствольных скважин составляет от 40 до 90 тыс. т.

Эффективность бурения многоствольных скважин изучалась на полноразмерной модели. Полноразмерные детальные модели реальных залежей нефти позволяют одновременно учесть геологические и технологические факторы, влияющие на эффективность геолого-технических мероприятий (ГТМ). Учет многих факторов - одно из преимуществ методов моделирования. В табл. 3 для примера приведены прогнозные технологические показатели для скв. 12 в одноствольном и двуствольном исполнении. Расчеты на ПДГТМ показали, что из двухствольной скв. 12 можно получить дополнительно около 95 тыс. т нефти в отличие от одноствольной. В то же время бурение вторых стволов из некоторых скважин согласно расчетам на модели не улучшает технологические и экономические показатели. Это связано с геологическими особенностями конкретных участков. На самом деле, поскольку первые стволы выполняют разведочную функцию и уточняют геологию, появляется реальная возможность определить эффективность бурения дополнительных стволов и скорректировать их траектории.

Для изучения влияния различных геолого-физических факторов на эффективность бурения дополнительных стволов и обеспечения сопоставимости результатов были проведены расчеты на элементе пласта. Для элемента приняты средние характеристики залежи в районе скв. 12. Расчеты показали существенную зависимость технологической эффективности вторых стволов от анизотропии по проницаемости пласта под скважиной и начальной нефтенасыщенной толщины пласта. Дебиты жидкости одноствольной и двуствольной скважин в расчетах задавались одинаковыми. На рис. 6 приведено поле нефтенасыщенности для элемента на 2050 г. при одноствольном и двуствольном исполнении проектной скв. 12 для начальной нефтенасыщенной толщины 24 м и k /kz=4. Из него хорошо видно, что выработка элемента при одной и той же накопленной добыче жидкости выше при двуствольной скважине. Чем меньше отношение k /kr тем выше эффект от бурения двуствольных скважин по сравнению с одноствольнь Это объясняется более острыми гребнями обводнения cкважин, что ускоряет обводнение стволов. Так, при k Jkz=A K1 при 95%-ой обводненности и разработке одноствольной скважиной составит 33,2 %, при двуствольной - 42,3 %, при у жденном k /kz - 42 %.

Таблица 4

Показатели кху/кг Начальная нефтенасыщенная толщина, м
10 4 1 0,25 12 18 24 36
КИН: при одном стволе 38,5 33,2 29,4 28,4 13,2 24,9 33,2 43,1
при двух стволах 46,03 42,3 38,9 37,8 24,8 36,4 42,3 48,3
Относительный прирост КИН 0,20 0,27 0,32 0,33 0,88 0,46 0,27 0,12

Примечание. При определении КИН в зависимости от начальной нефтенасыщенной толщины пласта кху/кz=4.

Прирост КИН может достигать 10,5 пунктов при равенстве вертикальной и горизонтальной проницаемостей и еще выше при «обратной» анизотропии, когда вертикальная проницаемость кратно выше горизонтальной. Например, при КИН при 95%-ой обводненности при разработке одноствольной скважиной составит 28,4 %, двуствольной - 37,8 %. Такое соотношение проницаемостей может быть при развитии вертикальной трещиноватости пластов. В табл. 4 показан расчетный прирост КИН в зависимости от ани-зотропии пласта, числа стволов скважины и начальной нефтенасыщенной толщины пласта. Важный вывод также заключается в том, что при меньших нефтенасыщенных толщинах относительный прирост КИН при разработке двуствольными ГС значительно выше. При неподтверждении нефтенасыщенных толщин вариант бурения скв. 12 в двуствольном исполнении более актуален.

Выводы

1. Анизотропия пласта по проницаемости - один из важнейших параметров, влияющих на эффективность разработки Кравцовского месторождения. Определение ее величины возможно путем тщательной настройки модели по КВД и ИД. Анизотропия изменяется по площади залежи.

2. Эффективность бурения дополнительных стволов зависит от геологического строения в месте их размещения. При принятии решений о бурении дополнительных стволов следует учитывать, что первый ствол уточняет геологическое строение. Методика уточнения структуры путем многократного пересечения горизонтальными стволами кровли залежи на Кравцовском месторождении полностью себя оправдала.

3. Мониторинг разработки морских месторождений с применением ПДГТМ, включающий мониторинг их разбуривания, позволяет существенно повысить эффективность добычи углеводородов и является необходимой составной частью управления процессом разработки.

4. Бурение дополнительных стволов и многоствольных скважин - эффективный способ повышения конечного КИН и технико-экономических показателей разработки. Применение многоствольных скважин позволяет уменьшить негативные последствия неподтверждения нефтенасыщенных толщин краевых, недоразведанных зон.

Список литературы

Журнал «Нефтяное хозяйство» № 5, 2006