Значительно большая доля цинка (в формам нахождения в почвах, 1999 отличие от свинца - 3,4) - 32,7% - связана с органическим веществом, оставшиеся 18,5% связаны с оксидами и гидроксидами железа и марганца и сульфидами. Доля свинца связанного с оксидами и гидроксидами железа и марганца и сульфидами составляет 39 %. Данные рентгенофазового анализа подтвердили наличие в почвах собственной минералогической фазы свинца - гидроцеруссита.
Почвенные аномалии ПФ ТМ существенно более контрастны. Кроме того, в отличие от валовых содержаний, с 1989 по 1997 г.г. они значительно увеличились и качественно, и количественно: по данным 1993 года были выделены аномальные участки с 20-тикратным превышением ПДКп.ф, как для цинка так и для свинца. Сравнение этих данных с данными предыдущих лет позволяет говорить о тенденции увеличения доли ПФ Zn и Pb в обеих аномалиях (табл. 7).
Таблица 7. Средние концентрации валовых и подвижных форм Pb и Zn в почвах (мг/кг). | |||||||||||
Год | Аномалии | Кол-во проб | Свинец | Цинк | |||||||
содержания | % | Кс | содержания | % | Кс | ||||||
Вал | ПФ | вал | ПФ | ||||||||
1989 | нижняя | 19 | 268 | 48 | 17,9 | 6,9 | 661 | 127 | 19,2 | 7,9 | |
верхняя | 275 | 32 | 11,6 | 4,6 | 875 | 139 | 15,9 | 8,7 | |||
1994 | нижняя | 8 | 250 | 50 | 20,0 | 7,1 | 1500 | 513 | 34,2 | 32,1 | |
верхняя | 1100 | 67 | 6,1 | 9,5 | 1500 | 154 | 10,3 | 9,6 | |||
1997 | нижняя | 22 | 241 | 88 | 36,5 | 12,6 | 1417 | 913 | 64,4 | 57,1 | |
верхняя | 211 | 51 | 24,2 | 7,3 | 1613 | 403 | 25,0 | 25,2 | |||
1999 | нижняя | 10 | 234 | 120 | 51,3 | 17,1 | 1200 | 800 | 66,7 | 50,0 | |
верхняя | 200 | 80 | 40,0 | 11,4 | 1500 | 825 | 55,0 | 51,6 | |||
фон | 5 | 28 | 7 | 25,0 | - | 87 | 16 | 18,4 | - |
Как видно из таблицы в 1989, 1994 годах подвижные формы составляли: 6 -20 % для свинца, 10-34 % для цинка. В 1997, 1999 г.г. процент извлечения подвижных форм увеличился и составил для свинца 24 - 51 %, для цинка 25 - 67 %. Рассчитанные коэффициенты концентрации по ПФ металлов увеличиваются за исследуемый период: 5,8 - 8,3 - 10 - 14,3 для свинца, 8,3 - 21 - 41 - 51 для цинка.
Наибольшая концентрация подвижных форм ТМ выявлена в зоне загрязненияна нижних террасах р. Ардон (фруктовые сады). За период 1989 - 1999 г.г. в почвах нижних террас установлено увеличение подвижных форм Pb в 2,5 раза. В твердой фазе пыли на этом участке (1999 г.) подвижные формы свинца составляют
Глава 5. Геохимическая оценка загрязнения растительности.
Фруктовый сад на нижних террасах р. Ардон является естественным барьером на пути аэротехногенных выпадений с хвостохранилища. Пылевая нагрузка в первую очередь определяет повышенные содержания ТМ в листьях яблонь (табл. 8). Корреляция между содержанием свинца в листьях и пыли (0,73, 1% - 0,623, n=16) более значима, чем в листьях и почве (0,592, r5% - 0,497, n=16), для цинка - более значимо почвенное поступление, о чем свидетельствует положительная корреляция между содержаниями в почве и листьях (0,55, r5% -0,497, n=16).
Таблица 8. Концентрации ТМ в листьях яблонь, 1998 г. (мг/кг сух. вещества). (1 - верхняя аномалия, 2 - нижняя аномалия) | |||||||||||
Сф | Смин.ан. | % ан. проб | Сср. на Sп. аномалии | Кс | Zc | ||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | ||||
Zn | 51 | 106 | 0 | 38 | 84 | 114 | 1,6 | 2,2 | 2 | 10 | |
Pb | 22 | 39 | 0 | 100 | 18 | 96 | 0,8 | 4,4 | |||
Cu | 15 | 30 | 0 | 12,5 | 11 | 21 | 0,7 | 1,4 | |||
Ag | 0,085 | 0,186 | 0 | 63 | 0,07 | 0,21 | 0,8 | 2,5 |
Суммарный показатель загрязнения листьев яблонь нижних террасах р. Ардон в 1998 г. в среднем составлял 10, в 1999 г. - 20, в 2000 г. - 28 (основные загрязнители: Pb>Ag>Zn>Cu>Co>Bi). На верхних террасах по данным 1998-2000 г.г. Zc в листьях не превышает 8. Эти данные, во-первых, говорят о влиянии хвостохранилища на нижнем участке, а во-вторых, учитывая, что листья -ежегодно обновляемый орган растения, о росте темпов аэротехногенного поступления ТМ, связанном с восстановлением деятельности ССЦК фактически прекращенной в начале -середине 90-х годов.
Оценка влияния пылевого загрязнения по коре и спилам ольхи, ивы, яблони и груши (7-8 лет), растущим на нижних террасах р. Ардон в зоне непосредственного влияния хвостохранилища подтвердила тенденцию увеличения содержаний ТМ после постройки хвостохранилища в сравнении с более ранними промежутками времени. Но особенно высокие концентрации ТМ на порядок выше, чем в спилах, выявлены в пробах коры.
При изучении состояния сельскохозяйственных культур района опробовались плоды яблонь, картофель и кукуруза. Содержания ТМ в биопробах на исследуемой территории, в том числе и на фоновых участках, находятся на уровне и выше ПДК (Zn - 8,5% проб фруктов, 100% проб картофеля и кукурузы; Pb - 87% проб фруктов, 75% проб картофеля, 59% проб кукурузы). Учитывая, что природный почвенный фон исследуемого района обусловливает повышенные содержания ТМ в растениях, а также их различную способность к накоплению химических элементов, основным критерием при определении техногенного воздействия на загрязнение растительности являлся коэффициент концентрации.
По данным 1997 г. в пробах фруктов не обнаружено аномальных концентраций металлов на всем участке опробования (суммарный показатель загрязнения < 8). Тем не менее, на нижних террасах р. Ардон концентрации свинца в среднем в 2,3 раза выше фоновых, отмечены также повышенные концентрации серебра (Кс-1,7).
Похожая картина наблюдается и для кукурузы. В зернах кукурузы аномальные содержания отмечены только для цинка: на верхних террасах р. Ардон средний Кс - 3, на нижних - 2,4. (Zc
Наиболее загрязненным из всех биопроб, употребляемых в пищу, является картофель. На верхних террасах аномальные концентрации отмечены для Ag и Pb, повышенные - для Zn и Cu (Zc-14), на нижних - Zn и Ag (Zc <8).
Сравнение с данными предыдущих лет показало, что с 1990 вырос только уровень загрязнения картофеля на верхней аномалии по Pb и Zn и силоса кукурузы на нижней аномалии по Ag. Для остальных культур по всем остальным элементам уровень загрязнения либо не изменился, либо снизился.
Сравнение данных по накоплению ТМ на нижних и верхних террасах р. Ардон по всем средам за 1997 г., показало, что наибольшие значения Ксдля Zn наблюдаются в донных отложениях (9 и 10), почвах по валовому содержанию (15 и 18) и в подвижной форме (25 и 57) и воде (26 и 33). Для яблок, пыли, листьев, картофеля и кукурузы концентрации цинка практически соответствуют фону (Кс<3). Существенная разница в концентрации цинка между верхними и нижними террасами наблюдается только по подвижным формам металла в почве (в 2,3 раза выше на нижней аномалии), а также в листьях яблони (в 1,72 раза), при том что Ксне превышает 2,5.
Степень накопления Pb на нижних террасах р. Ардон существенно выше, чем на верхних: в 14 раз в силосе кукурузы, в 5,5 раз в листьях, в 2,2 раза в яблоках, в 2 раза в пыли, в 3,3 раза в воде. В почвах, как и для Zn, значимых различий в накоплении по валовому содержанию между участками нет, но концентрация ПФ на нижних террасах в 1,72 раза выше. Преобладание концентрирования на верхних террасах отмечено только для картофеля (2,2) и зерен кукурузы (1,8), т.е. для проб, защищенных от пылевого воздействия хвостохранилища, что подтверждает его решающую роль в загрязнении свинцом нижних террас р. Ардон. В целом, максимальные коэффициенты концентрации отмечены для ПФ (14 и 8 на нижних и верхних террасах соответственно) и валовых концентраций металла в почве (9 и 8), а также в воде (14 и 4,5) и донных отложениях (8 и 6,5).
Похожая картина наблюдается и для серебра. В силосе кукурузы, листьях и плодах яблонь степень концентрации металла на нижних террасах существенно выше, чем на верхних (в 3,4, 3,4 и 2 раза соответственно). Наибольшая разница в пользу верхних террас (3,85 раза) отмечена для картофеля, концентрация серебра в почвах одинакова на обоих участках (5,0 и 5,1). Максимальные коэффициенты концентрации отмечены в картофеле на верхнем участке, почвах в целом и донных отложениях.