Уi=a у/х× Xi +b (1.7)
Это уравнение определяет функциональное соотношение между точными результатами измерений и условием отсутствия систематических ошибок является выполнение равенств:
a = 1, b = 0 (1.8)
В случае опробования оба ряда отягощены случайными погрешностями, как основной, так и контрольный. Причем считается, что последний не имеет систематических ошибок. Задача состоит в том, чтобы определить величину и значимость систематических расхождений при заданном уровне случайных ошибок в каждом сравниваемом ряде измерений. В этом случае связь между xi и уi может быть представлена линейным уравнением регрессии:
уi = a у/х× xi + ву/х (1.9)
При этом, если s 2 (x ), s 2( e (Х)), s 2( e (У)) - дисперсии истинных содержаний и ошибок измерений соответственно, то дисперсии результатов измерений, коэффициенты регрессии и корреляции будут равны [27]:
s 2 (х)= s 2 (x )+s 2( e (Х)), s 2 (у)= s 2 (x )+s 2( e (У)),
(1.10)Откуда получим:
где (1.11)Из (1.11) следует, что если результаты основного метода содержат случайные ошибки измерения, то ау/х £ a у/х=1, аналогично b у/х=0, ву/х¹ 0 т.е. при отсутствии систематических ошибок в результатах основного метода коэффициенты уравнения регрессии могут отличаться от 1 и 0. Лишь в случае, когда диапазон изменения истинных содержаний достаточно широк, а ошибки измерений незначительны, различие между (1.9) и (1.7) может быть практически незначительным (К(х)< < 1).
В общем случае, для определения коэффициентов (1.9) применяются методы конфлюэнтного анализа [16, 27, 35], позволяющие анализировать априори постулируемые функциональные связи между переменными, в условиях, когда наблюдаются не сами переменные, а случайные величины. Наиболее полно разработаны способы оценки линейного соотношения, из которых интересен для оценки систематических ошибок способ нахождения коэффициентов a и b при наличии дополнительной (по отношению к двум сопоставляемым рядам) информации о характеристиках ошибок измерений [35]. Для этого по экспериментальным данным получают оценки
и и проверяют статистическую значимость отличия их от 1 и 0 соответственно. Следуя [27], опишем схему оценки:1. Имеется n пар измерений (xi /yi) для n проб с истинными (но неизвестными нам) содержаниями искомого элемента x i.
2. Ошибки измерений распределены нормально, так что результаты измерений xi и yi могут рассматриваться как выборочные значения из нормальных совокупностей со средними значениями Xi и Yi соответственно.
3. Дисперсии ошибок основных и контрольных измерений одинаково зависят от измеряемой величины или постоянны.
4. Имеется дополнительная информация: известно отношение дисперсий ошибок сопоставляемых методов:
(1.12)либо одно из значений d 2.
Исходные статистики определяются по формулам:
(1.13)Оценки
и определяются по формулам: , (1.14)Если известна величина
или =0, то ; (1.15)Если известна величина
или =0, то ; (1.16)где
- оценка коэффициента регрессии у на х.Получаемые оценки
и являются состоятельными и несмещенными при любом характере распределения истинных содержаний в пробах и любой l . Для оценки возможной величины невыявленной систематической ошибки следует найти доверительные интервалы для истинных значений a и b . Если эти интервалы настолько широки, что могут маскировать недопустимые по величине систематические ошибки, необходимо увеличить объем сопоставляемого материала (в разумных пределах) или усовершенствовать методику измерений [ 9, 27].В соответствии с характером обсуждаемых в настоящей работе задач и практического опыта применения ЯГФМ на месторождениях Южного Казахстана метрологические требования сводятся к следующему:
1. Фторометрия высоких содержаний, определение подсчетных параметров (содержания и мощности) при разведке флюоритов. В соответствии с требованиями кондиций пласт минимальной промышленной мощности с содержанием для оконтуривания забалансовых руд должен надежно фиксироваться по мощности и содержанию (10% СаF2 на 2 м. интервал). Сходимость результатов повторного и контрольного cпектрометрического нейтронного активационного каротажа ( СНАК ) по содержаниям в промышленных классах по величине среднеквадратической ошибки должна быть меньше среднеквадратических расхождений по половинам керна в промышленных по мощности пересечениях. Правильность СНАК оценивается по массовому сравнению с данными керна, имеющего повышенный выход (в соответствии с геологическим проектом).
2. Фторометрия малых (0,2-3,3% F2 ) и близких к кларковым (0,05-0,2% F2) содержаний (фосфориты, апатиты и геохимические первичные ореолы на месторождениях). Для фосфоритов и апатитов схема подхода остается как в пункте 1, соответственно содержания фтора 1,0% и 0,28% при мощностях 3 и 10 м. т.е. при близких линейных запасах (3 и 2,8 м*%). Для непрерывных и точечных измерений главным требованием становится предел определения (не хуже 0,1% F2).
3. Определение технологических компонент руд горно-химического сырья. Для флюоритов - это CaCO3 и SiО2 , для фосфоритов –это SiО2 в каждой пробе и Al2O3, СaО, CО2, MgO в подсечении или блоке. Сходимость результатов ЯГФМ по классам содержаний на длину указанных интервалов должна быть не хуже данных по сравнению этих параметров по половинам керна. Систематические погрешности оцениваются и при необходимости учитываются сравнением с результатами кернового химического опробования по опорным скважинам, имеющим кондиционный выход керна.
4. Для фторсодержащих сред с полиметаллическим, баритовым и редкометальным орудеяением требования к ЯГФМ можно конкретизировать следующим образом.
В поисковых скважинах интерес представляют визуально отмечаемые в керне включения рудных минералов: вольфрамита, шеелита, галенита, сфалерита и барита. В этих случаях минимальные содержания вольфрама, свинца, цинка не превышают одну десятую и первые десятые доли процента, а барита первые проценты на длину керновой пробы (0,5; 1,0; 2,0 м). РРК должен обладать пределом определения не хуже 0,1% W03, Pb; 0,2% Zn. и 2,0 BaSO4 с надежностью 95% на единичный интервал опробования. Для разведочных скважин РРК должен надежно выделять и количественно оценивать содержания рудных компонентов, начиная с забалансовых в единичных интервалах; для вольфрама - 0,17% W03 на мощность 6 м, для полиметаллов - 0,35% Рb и 0,60% Zn. на мощность 3 м, для баритов - 10% на 3 м.
5. При расчленении карбонатно-терригенно-глинистых резрезов по петрогенным составляющим – SiO2, Al2O3, СaCО3 и (Ca,Mg) (CО3)2 должны быть найдены бескерновые способы однозначной оценки с пределами определения не выше 0,4% Al2O3, l% SiO2 и первые проценты для кальцита и доломита с обеспечением градаций расчленения по Al2O3, через 0,5-1%, а для других через 5%.
6. При расчленении пород разреза: по эффективному атомному номеру разрешение метода должно быть не выше 0,2 ед. в диапазоне 9,2-18 ед.; по плотности надтепловых нейтронов (общее водородосодержания) в относительных условных единицах разрешение метода должно быть не выше 0,2 усл.ед.; по содержанию урана, тория и калия основное внимание должно быть акцентировано на измерении малых активностей с пределами определения на интервал 5м не выше 0,2-0,3% калия и 1.10(-6)% урана и тория.