АП = def [RП (аR)] × PП
Здесь аR- элементы геохимической системы АS, слагающие парагенетическую ассоциацию
Концепция Р дополняется при переходе к парагенетическим ассоциациям требованием, чтобы элементы, объединяемые в АП, должны реагировать на изменения внешней среды сходным образом. Целостность геохимических систем обусловлена действием общих факторов FS. При переходе к парагенетическим ассоциациям, не все факторы из множества FS сохраняют системообразующие свойства. В связи с этим, возникает необходимость выделения из FS подмножества FП, объединяющего только те факторы, которые обеспечивают однонаправленность изменения состояния аR Î АП.
Таким образом, целостность и степень структурной однородности парагенетической ассоциации как системы особого рода определяется величиной вклада, связанного с действием факторов типа FП. Специфика факторов FП обусловливает сужение семейства системообразующих отношений. Если в геохимических системах допустима любая форма зависимости между концентрациями аR Î АS (как результат действия общих факторов FS), то для парагенетических ассоциаций, удовлетворяющих приведенному выше определению, приемлем только класс монотонных зависимостей. Обычно оперируют линейными зависимостями, использование которых в парагенетическом анализе вполне обосновано, т.к. факторы FП имеют причинный статус [1, 2, 4, 11, 14, 21, 29, 37, 44, 47, 48, 51, 61, 62, 73, 76- 79, 80, 84] .
Благодаря внедрению в практику геологических исследований математических методов и ЭВМ выделение парагенезисов и определение связей между их элементами все чаще осуществляется с помощью корреляционного и регрессионного методов [4, 21, 25, 28, 34, 35, 61, 63, 64, 66, 75- 78, 79, 84] .
В рамках системного подхода наиболее типична ситуация, когда неизвестны ни значения факторов F, ни реакция объекта на их воздействия. Неопределенность поведения объекта (с точки зрения исследователя) достигает крайних пределов. Но и в этом случае можно существенным образом снизить степень неопределенности, если от функциональных связей типа УR = j (F) (строго детерминированная модель) перейти к менее четким, но более реальным соотношениям типа:
П (F) ® П(У),
где П(F) - множество подмножеств множества значений F, П(У) -множество подмножеств множества выходных результатов У. Описание предложенной модели осуществляется на основании специально вводимой меры - вероятности Р. Допустимость вероятностной трактовки содержаний элементов, составляющих множества F и У, определяется, с одной стороны их случайным характером, а с другой – относительно устойчивым появлением подмножества выходных результатов
Î П(У) при неоднократной реализации некоторого комплекса внешних условий Î П(Р).В геохимических системах в качестве случайности выступает частичная непредсказуемость результата эксперимента (при отборе и анализе проб). Действительно, истинное значение концентрации элемента в определенной точке геологического объекта совершенно определенное и является закономерным результатом геохимических процессов. Но при отборе и анализе проб (данный комплекс условий эксперимента) мы в каждой конкретной точке получаем значения концентраций, колеблющихся с определенной надежностью около определенного значения, т.е. имея многократное повторение процесса опробования можно рассматривать колеблющиеся в определенных пределах значения концентраций как случайные события. Рассматривая концентрации как случайные величины, можно выделить два случая:
а) изучаемая величина по своей природе не является случайной, но методы ее измерения (комплекс условий) обладают некоторой погрешностью, которая приводит к случайным значениям. Примером может служить анализ одной и той же пробы без расхода аналитического материала (ядерно-физический способ). Погрешность способа анализа будет выступать в качестве случайности в получении результата. Это классический пример применения вероятностных методов к теории ошибок, впервые изложенный Далласом [81];
б) Изучаемая величина является случайной относительно общего комплекса условий по своей природе. Задача определения среднего содержания в геологическом объекте по сериям отобранных проб при измерениях содержаний в отдельных пробах с абсолютной точностью. Колебания значений среднего содержания по сериям в этом случае также будут иметь место.
Таким образом, в геохимии имеют место случайные события, и это совершенно не противоречит физико-химическому подходу к изучению геологических объектов.
В общем случае значения концентраций в геохимических системах из-за частичной непредсказуемости результатов по вышеуказанным причинам могут рассматриваться как случайные величины, к которым применимы вероятностные методы изучения, с помощью статистических моделей, которые бывают двумерными и многомерными [44, 47] .
Для кристаллохимических связей характерна двумерная модель, в которой объект исследования рассматривается как двумерная статистическая совокупность с двумерной функцией распределения случайных величин X и У. В данном случае связи близки к функциональным, элемент случайности возникает из-за ошибок измерений коррелируемых величин. Между двумя случайными величинами проявляются стохастические (вероятностные) связи, когда заданному значению случайной величины X = х соответствует не определенное значение У, а некоторый набор ее значений –у1, у2, у3 …уn; каждое из которых характеризуется определенной вероятностью -p1, p2, p3 …pn. Функция распределения величины У, соответствующая значению Х=х характеризуется математическим ожиданием ` Ух и дисперсией
.Распределения величины У соответствующие выбранным значениям величины X, называются условными распределениями, а дисперсии
условными дисперсиями. Геометрическое место точек, соответствующих центрам условных распределений ` ух называется регрессионной зависимостью, а уравнение ее - уравнением регрессии. Аналогично каждому значению распределения величина У=у соответствует некоторая функция распределения величины X с математическим ожиданием ` ху и дисперсией .Система из двух случайных величин всегда будут соответствовать две регрессионных зависимости:
ух=f (x) и ху=f (у)
В частном случае зависимости могут быть линейными, в общем случае - нелинейными.
Для линейной регрессии система уравнений имеет вид:
у = а1+в1× х (регрессия у на х);
х = а2+в2× у (регрессия х на у).
Уравнения нелинейной регрессии соответствуют более сложной зависимости, но практически всегда могут быть аппроксимированы по частям уравнениями прямых или полиномами до третьего порядка.
В общем, регрессия может быть однозначно описана, если известей вид уравнения и значения коэффициентов при неизвестных. Остановимся на анализе линейной регрессии. В системе двух уравнений линейной регрессии коэффициенты а1 и а2, определяют положения начальных точек уравнений и называются коэффициентами пересечения или свободными членами уравнений [2, 34, 44, 48]. При а1 = а2, =0 уравнения исходят из начала координат.
Степень зависимости (тесноты связи) случайных величин определяется коэффициентами линейной регрессии - в1 и в2, геометрически они представляют собой тангенсы углов наклона прямых регрессии к осям абсцисс и ординат (a и b ). В общем случае прямые регрессии имеют общую точку пересечения с координатами в виде математических ожиданий величин X и У , а угол g между ними изменяется в пределах (0-90°) и характеризует также связь между величинами (чем меньше g , тем теснее связь, g =0 связь - функциональная, т.к. обе линии сливаются, в1= 1 / в2 или в1× в2=1)
Основными числовыми характеристиками двумерного распределения случайных величин являются показатели их связи: для линейной регрессии - коэффициент корреляции и корреляционный момент (ковариация); для нелинейной регрессии - корреляционное отношение [2, 44, 75].
Коэффициентом корреляции r между случайными величинами х и у называется математическое ожидание произведения их нормированных отклонений:
где Мх и Му – центры распределения величин х и у,
и - их дисперсии. Коэффициент корреляции r может быть представлен в следующей форме:Величина М(х-Мх)(у-Му) называется корреляционными моментом (ковариацией) – COV (x;y).
Коэффициент корреляции – величина безразмерная с пределами изменения - ± 1. При r =0 линейная связь полностью отсутствует. Знак r (+) или (-) указывает на характер связи (прямая или обратная).
Равенства | r | =1 означает наличие линейной функциональной зависимости между величинами х и у.
Несмещенными и состоятельными оценками математических ожиданий Х= Мх и У=Му служат эмпирические средние значения:
;Несмещенными и состоятельными оценками дисперсии
и служат эмпирические дисперсии: