Смекни!
smekni.com

Геодинамика докембрийской земной коры (стр. 3 из 4)

3. Группа трендов 3 на рис. 2 относится к комплексам гранулитовой фации [5] - наиболее глубоко метаморфизовынным породам. Запись прогрессивного этапа никогда не сохраняется в их минеральных ассоциациях. Вместе с тем среди пород этой фации встречаются такие, которые изначально образовались на поверхности Земли в виде известняков, песчаников, глин, вулканических пород. Накопление мощных вулканогенно-осадочных толщ приводило к постепенному погружению их на глубины порядка 30 км. Они претерпевали прогрессивный метаморфизм в заданном РТ-режиме. Однако запись этого этапа метаморфизма в виде зональности минералов в породах не сохраняется из-за высоких значений температуры, способствующей достаточно быстрому диффузионному выравниванию составов минералов [1, 6]. Достигнув пика РТ-параметров, эти породы вновь поднимались к поверхности Земли. Погружение пород на большие глубины и их нагрев известны и в молодых, даже в современных осадочных бассейнах [7].

Итак, РТ-тренды на рис. 2 отражают особенности термического режима погружения пород на большие глубины и последующий их подъем в разных геологических структурах. Это объективная и достаточно точная запись изменения термодинамических условий метаморфизма. Она отражает гравитационное перераспределение горных пород в земной коре [3], записанное в составах сосуществующих минералов [1]. По существу это крупномасштабная конвекция пород земной коры в гравитационном поле Земли, определяемая законами гидродинамики [7, 8]. Никакими другими моделями, кроме гравитационных, эту конвекцию объяснить невозможно. Особенно, если учесть повсеместное развитие таких явлений, выраженное в РТ-трендах метаморфической эволюции. Так, по диффузионным Fe-Mg каймам в крупных зернах граната удалось определить, что регрессивный этап метаморфизма пород гранулитовой фации метаморфизма в Ханкайском комплексе длился не более 3 миллионов лет [6]. Эта оценка близка к результатами изотопно-геохронологических исследований упомянутых выше гранулитов пояса Лимпопо (ЮАР). Здесь длительность метаморфического процесса определена в 3-5 млн. лет. За это время породы поднялись с нижних частей земной коры, т.е. с глубины порядка 30-40 км до уровня 12-13 км. Это значит, что скорость перемещения материала в земной коре составляет около 4-5 мм/год, что почти в пять раз превышает скорость эрозии и соответствующего осадконакопления материала в глубоководных бассейнах. При этом следует еще учесть очень высокую вязкость метаморфических пород: при относительно низких значениях температуры (400-600 0С) она достигает величин порядка 1020 пуаз. Это на 12-18 порядков выше вязкости силикатных магматических расплавов, относительно быстро изливающихся на поверхность земной коры.

Мощные накопления осадочных пород в глубоководных бассейнах хорошо известны в областях интенсивного сноса материала с континентальных окраин. Но, как показано в начале этой статьи, объем накопленного материала не сопоставим с теоретически рассчитанным объемом тех осадков, которые могли быть снесены благодаря процессу эрозии. Из этого ясно, что эрозионная модель не может объяснить РТ-петли на рис.2.

Известна также модель термальной конвекции, согласно которой породы на глубине кондуктивно разогреваются, частично разуплотняются и, как следствие, всплывают к поверхности Земли. Теоретическими расчетами и экспериментами доказано, что для пород с низкой темепературопроводностью механизм кондуктивного теплопереноса не эффективен. Кроме того, погружение пород на большие глубины приводит преимущественно к их уплотнению под воздействием высокого давления. И лишь при очень высоких dT/dP градиентах возможно их тепловое разуплотнение. Такие градиенты, однако, в земной коре практически не встречаются. Термальная модель не позволяет численно смоделировать процесс конвекции даже при допущении, что горные породы соответствуют по своим свойствам ньютоновской жидкости: при вязкости 1020-19 пуаз температура его инициирует, но не поддерживает в стационарном режиме.

Более эффективной оказалась иная термо-конвективная модель, обусловленная гравитационным перераспределением пород в земной коре под воздействием флюидно-теплового потока [3]. Количество материала, снесенного с континентальной коры в бассейн осадконакопления в процессе эрозии, несопоставимо с объемом вулканогенных пород. Даже ложе окраинных морей, - наиболее крупных бассейнов аккумуляции снесенного с континентов материала, - на 80 - 90% состоит из вулканических пород, возникших в процессе активной деятельности подводных вулканов. Состав и плотность этих пород закономерно изменяются в сторону верхних частей вулканогенных толщ: низы разрезов сложены кислыми вулканитами, затем следуют андезиты, а верхи представлены базальтами [9]. Плотность кислых пород примерно на 20% ниже плотности базальтов. Ясно, что разрезы таких толщ потенциально неустойчивы в гравитационном поле Земли: любое термальное возмущение приведет к снижению вязкости и плотности пород, и в пределах каждой такой толщи произойдет гравитационное перераспределение материала. Если геологический разрез двухслойный, то возникнут простые диапиры - прямые аналоги соляных диапиров, которые возникают из пластов каменной соли (NaCl) и, благодаря своей более низкой плотности и вязкости, всплывают в верхние части разрезов силикатных и карбонатных осадочных толщ.

Рис. 3. Результат численного моделирования сценария гравитационного упорядоче- ния по 5-слойной модели [3].

С появлением мощных компьютеров появилась возможность численного моделирования геодинамических процессов в рамках классической гидродинамики. Как и в случае термальной модели, в первом приближении можно использовать однородную ньютоновскую жидкость для РТ-условий подъема и остывания пород группы 3 на рис.2. Анализ такого моделирования дан в специальной работе [3]. Здесь же заметим, что заданная вязкость пород варьировала в пределах 1019 - 1020 пуаз, а градиент плотности не превышал 0.7 г/см3. Моделирование проводилось по специально разработанной на основе метода конечных элементов программе DIAPIR с помощью рабочей станции SUN для бесконечного по простиранию разреза. Химическое взаимодействие между слоями при этом не рассматривалось.

Скорость гравитационного перераспределения пород в земной коре определяется многими параметрами. И не только абсолютными их значениями, но их послойным различием. Например, развитие простейшего двухслойного гравитационно неустойчивого разреза в любом случае приведет к формированию диапира менее вязкого и менее плотного вещества в вышележащем веществе более плотном и более вязком веществе. Таковы, например, интрузии гранитных магм в относительно однородные толщи вулканогенных или осадочных пород [2]. В случае многослойных разрезов с дискретным распределением вязкости и плотности снизу в верх по разрезу, градиент температуры типа 3 на рис.2 может привести к образованию гранито-гнейсовых куполов в так называемых гранит-зеленокаменные поясах (ГЗП). Они распространены в выступах наиболее древней коры континентов, сформировавшейся более 3 млрд. лет тому назад. С их эволюцией, как правило, связаны месторождения высококачественных железных руд, золота и других полезных ископаемых. Обычно зеленокаменные пояса сложены слабо метаморфизованными породами (метабазальтами, метакоматиитами, полосчатыми железо-кремнистыми формациями типа КМА) и они прорываются гранитными диапирами. Диапиры имеют купольное строение и оконтурены зонами гнейсов. Их формирование неплохо моделируется 5-слойной моделью, согласно которой достаточно мощные грибовидные диапиры медленно формируются в средней части разреза (см. рис. 3).

Скорость их дальнейшего подъема к поверхности становится бесконечно малой. Вместе с тем, сравнительно недавно стало известно о прорывании ГЗП огромными, объемом в несколько тысяч км3 гранулитовыми комплексами, для которых характерны лишь прогрессивные РТ-тренды (рис.2, группа трендов 3). Эти гранулитовые комплексы всегда не только моложе вмещающих их пород ГЗП, но они менее плотные и более горячие. В силу этого вокруг них, в породах ГЗП возникает метаморфическая зональность.

Более того, их геохимических и петрологичских данных все более становится очевидным, что гранулитовые комплексы это нижние, богатые SiO2 и Al2O3, части разрезов ГЗП. Приток горячих флюидов из мантии много десятков, и даже сотен миллионов лет спустя инициирует гравитационное перераспределение пород в пределах ГЗП. В результате к поверхности Земли достаточно быстро, за 8-9 млн. лет всплывают гигантские массы гранулитового вещества, образуя своеобразные тела гарполитов (гарп - серп, греч). Таковы гранулитовые пояса Лимпопо (ЮАР, Зимбабве, Намибия), Лапландский гранулитовый пояс (Кольский п-ов, Финляндия, Норвегия) и ряд других, для которых на сегодняшний день имеются достаточно веские доказательства их происхождения.

На рис.4, представлена двумерная модель для сценария возникновения и развития гранулитового пояса Лимпопо (ГПЛ) с использованием базы данных по свойствам горных пород; связь температуры с глубиной определяется РТ-трендами, выведенными для гранулитов пояса Лимпопо на основе детальнейшей минеральной геотермобарометрии, основанной на исследовании реакционных структур [1].

Помимо автора этих строк, все эти данные были собраны и обработаны Т.В.Герей, О.Г.Сафоновым, профессорами Д.Д. ван Реененом и С.А.Смитом (Ранд Африкаан Университет, Йоханнесбург, ЮАР) в рамках инициативного МНФ проекта MJ2000. Cценарий во всех деталях воспроизводит эволюцию ГПЛ, которую в течении последних 25 лет удалось воссоздать некоторым участникам недавнего проекта на основе лишь геологических методами. А на рис.5 приведена численная трехмерная модель развития поверхности Лапландского гранулитового пояса, рассчитанная на основе имеющихся в нашем распоряжении геологических и петрологических данных. Завершающий этап формирования этого пояса относится к периоду 1.9-1.85 миллиарда лет тому назад.