Рис. 10 |
Таким образом, минералогические особенности рассматриваемых ассоциаций включений свидетельствуют о том, что их состав в первую очередь определяется фациальной обстановкой образования ксенолитов, а не является следствием различной истощенности мантийного субстрата. Ксенолиты являются индикаторами состояния вещества и тех процессов, которые совершаются под вулканами на сравнительно небольших глубинах.
Включения первых двух, менее глубинных ассоциаций характеризуют обстановку "петрогенезиса под вулканами" фронтальной вулканической зоны и района Ключевской группы вулканов. Как явствует из анализа минералогических диаграмм (рис.9,10), глубины, охарактеризованные этими ассоциациями соответствуют положению переходного слоя "коро-мантийной смеси" в островодужной системе. Постоянное присутствие в различной степени метаморфизованных и метаморфических пород фундамента в связи с ксенолитами ультрамафитов, первично магматическая природа ультраосновных включений свидетельствуют о том, что этот переходный слой представляет из себя нижние горизонты коры, в различной степени переработанные метаморфическими и метасоматическими процессами. Широким распространением здесь пользуются многочисленные магматические образования базит-гипербазитового состава, связанные с эволюцией глубинных очагов вулканов. Различия в составе этого переходного слоя под вулканами фронтальной зоны (ксенолиты дунит-гарцбурги-товой ассоциации и сопутствующие им преимущественно безамфиболовые габброиды, а также метаморфизованные породы мелового фундамента) и района Ключевской группы вулканов (ксенолиты дунит-верлит-пироксенитовой ассоциации и сопровождающие их амфиболовые габброиды, амфиболсодержащие кристаллические сланцы и амфиболиты) свидетельствуют об активном участии существенно водных флюидов при его образовании во втором случае, и относительно сухом режиме в первом. Отражение этих отличий в характере вулканических процессов и составе продуктов вулканизма неоднократно подчеркивалось исследователями. Судя по минералогическим данным [6], исходные расплавы для вулканитов Харчинского и Заречного вулканов отличались высоким содержанием воды (таким же, как и для вулкана Шивелуч) и кристаллизовались при высокой фугитивности кислорода. Несколько меньшая, но также высокая водонасыщенность магматических расплавов предполагается для Ключевского вулкана [31]. Оценивая роль глубинной гидратации-дегидратации океанской литосферы в вулканизме Камчатки Н.И.Селиверстов [28] пришел к выводу о том, что глубинные магматические очаги Северной группы вулканов в отличие от вулканов, расположенных напротив Кроноцкого и Авачинского заливов, должны отличатся повышенным содержанием растворенного водного флюида.
Ксенолиты третьей ассоциации характеризуют обстановку магмообразования для проявлений вулканизма внутриплитного геохимического типа: относи-тельно низкие значения log f02, глубины и температуры, отвечающие шпинель-лерцолитовому равновесию. В петрологических моделях этот тип вулканизма (связанный с подьемом локальных мантийных плюмов) противопоставляется "надсубдукционному" островодужному [4]. Присутствие среди шпинелей в ксенолитах "островодужных" вулканитов относительно высокобарических глиноземистых генераций свидетельствует, однако, о более тесных генетических связях между этими типами.
Среди большого массива аналитических данных по составу позднекайнозойских вулканических пород Камчатского региона [9] имеется сравнительно небольшое число анализов, относительно приближенных к составу родоначальных расплавов. Породы различных серий островодужной системы отражают не столько составы первичных выплавок и условия их генерации, сколько вариации силикатных расплавов и условия, существовавшие в коровых магматических очагах [30]. Мнения исследователей в отношении состава родоначальных магм для этих серий расходятся. При этом наибольшие разногласия существуют в отношении приоритета высокомагнезиальных или высокоглиноземистых составов. Одни исследователи [30] считают, что среди первичных базальтов островных дуг следует выделять два крайних типа: толеитовый и щелочной. При этом для всех серий нормальной щелочности они предполагают наличие единой, близкой к толеитовой первичной базальтовой магмы с повышенным (8-12%) содержанием MgO. Это предположение подтверждается экспериментальными исследованиями [14], согласно которым высокоглиноземистые базальты островных дуг образуются в результате кристаллизационной дифференциации первичных высокомагнезиальных магм в очагах, располагающихся в переходной между корой и мантией зоне на глубинах 20-40 км. Расчетные составы первичных расплавов известково-щелочной магнезиальной серии Ключевского вулкана с учетом состава частично гомогенизированных расплавных включений отвечают пикритам [31]. Существует, однако, мнение [1] о том, что расплав высокоглиноземистого базальта является исходной магмой для пород известково-щелочной серии Восточной Камчатки.
Попробуем решить эту проблему с точки зрения анализа ксенолитсодержащих вулканитов и ксенолитов.
Присутствие в составе вулканической породы барофильной или высокотемпературной реликтовой кристаллической фазы свидетельствует о том, что расплав, из которого кристаллизовалась эта порода, в минимальной степени модифицирован процессами малоглубинной дифференциации, и здесь следует искать ответ на вопрос - каков был состав родоначального расплава. Состав ксенолитов в базальтоидах внутриплитного геохимического типа однозначно свидетельствует о том, что их первичные расплавы образовались в условиях шпинель-лерцолитового равновесия. Следовательно, им должны соответствовать относительно низкоглиноземистые, недосыщенные по SiO2 высокотитанистые магнезиальные базанитовые составы. Именно таким составам отвечают ксенолитсодержащие базальтоиды из покровных вулканитов в фундаменте вулкана Бакенинг.
В целом, обе ассоциации "островодужных" ксенолитов (дунит-гарцбургитовая и дунит-верлит-пироксенитовая), также как и содержащие их вулканиты, претерпели значительную модернизацию в коровых магматических очагах и почти не содержат первичных признаков ранней эволюции. Однако, среди шпинелей из ксенолитов в известково-щелочной серии вулкана Шивелуч и субщелочной серии Харчинского вулкана были обнаружены генерации с повышенным содержанием глинозема, которые характерны для ксенолитов, находящихся в условиях шпинель-лерцолитового равновесия и ассоциирующих с вулканитами внутриплитного геохимического типа. По-видимому, здесь и нужно искать составы родоначальных расплавов для вулканических серий этих вулканов. В шпинелях из ксенолитов гарцбургитов в толеитовой серии Авачинского вулкана впервые были обнаружены первичные расплавные микровключения. Они фиксируются в генерациях минерала, которые по железистости охватывают практически весь диапазон изменения составов шпинелей гарцбургитов этого вулкана, начиная с наиболее ранней относительно железистой фазы. Следовательно, составы этих микровключений можно использовать для оценки первичных расплавов толеитовой серии вулканитов, содержащих ксенолиты ультрамафитов. Как видно из таблицы 7, составы эти соответствуют бонинитам. Более того, некоторые из них весьма близки по своим петрохимическим особенностям к экзотическим высокомагнезиальным породам "авачитам", найденным в районе Авачинского и Козельского вулканов [34]. Эти высокомагнезиальные базальты характеризуются обычным "бонинитовым" парагенезисом минералов (оливин, два пироксена, хромистая шпинель) в ассоциации с высококремнеземистым дацитовым стеклом. При этом в ядрах некоторых минералов-вкрапленников отмечаются высокомагнезиальные "гипербазитовые" генерации: оливин (Fo=90,0), клинопироксен (Mg#91,1-91,4), ортопироксен (Mg#82,4-83,5). Ассоциации близких по составу минералов и стекол основной массы характерны для бонинитов и сопутствующим им вулканитов.