Математическое моделирование структуры поля температур зон субдукции при разных скоростях движения и разном возрасте поддвигаемой океанической коры [78] показало, что в стационарном режиме субдукции плавление океанической коры не происходит. Частичное плавление океанической коры может происходить только при очень ограниченных условиях: при повышении температуры верхней части поддвигаемой пластины выше 750oС за счет необычно высокого сдвигового напряжения (более 100 Мра) или за счет других причин, а также при субдукции очень молодой (моложе 2-5 млн лет) океанической литосферы.
Таким образом, для Курильской ОД, так же, как, очевидно, и для других ОД и активных окраин континентов со стационарным режимом субдукции, в том числе и для Южной Камчатки наиболее вероятной является модель плавления мантийного клина в зоне высоких температур под воздействием воды и других летучих компонентов (см. рис.7 и 8). Вместе с тем изменение структуры поля температур, особенно повышение температур поддвигаемой пластины и примыкающих участков мантии более чем на 80-100oС может привести к изменению условий плавления и появлению необычного типа вулканических пород.
Вариации условий магмообразования
Как уже отмечалось выше, необычный тип вулканических пород характерен для района сочленения Восточно-Камчатской вулканической дуги, включающей и вулканический пояс Центральной Камчатской депрессии, с Алеутской ОД. Особенности проявления вулканизма этого района, состав вулканических пород, закономерности пространственной их локализации подробно охарактеризованы в работах О.Н.Волынца с соавторами [12,15-17,19].
Северная группа вулканов от Толбачинской ареальной зоны шлаковых конусов до вулкана Шивелуч характеризуется высокой интенсивностью вулканизма и наличием магнезиальных базальтов и андезитов. Вулканы Харчинский и Заречный в этой группе почти целиком сложены магнезиальными базальтами с небольшим количеством магнезиальных андезибазальтов. Одноактные шлаковые и лавовые конуса Харчинской региональной зоны также сложены преимущественно магнезиальными базальтами и андезитами. В позднем плейстоцене за 30-40 тыс. лет эруптивными центрами Харчинского вулканического массива вынесено на поверхность около 80 км3 магнезиальных пород, преимущественно базальтов, что в 5-10 раз больше, чем для всей Камчатки в позднем плейстоцене - голоцене [15]. Магнезиальные породы отмечены также в Толбачинской зоне шлаковых конусов и в конусах побочных прорывов Ключевского вулкана, так же как и на вулкане Шивелуч [17].
Таким образом, полоса распространения магнезиальных андезитов протягивается вдоль простирания Восточно-Камчатской вулканической дуги, причем, количество магнезиальных пород заметно убывает как на юго-запад, так и на северо-восток от Харчинского массива, почти нацело сложенного магнезиальными базальтами. На удалении от этого массива также появляются более кислые породы - магнезиальные андезибазальты и даже андезиты [16,17].
Алеутское направление зоны сочленения также характеризуется наличием магнезиальных пород. На побережье Камчатского залива, к востоку от современного вулканического фронта магнезиальные базальты слагают небольшие изолированные лавовые и шлако-лавовые вулканы плейстоценового возраста [15,43]. Дайки аналогичного состава позднеплейстоцен-плиоценового возраста распространены на п-ове Камчатского мыса [15]. Магнезиальные андезиты драгированы также в Камчатском проливе и на подводном вулкане Пийпа, к северо-востоку от о.Беринга [14,15,93,94]. Общая протяженность зоны проявления магнезиальных пород на западном окончании Алеутской дуги ~430 км.
Чем отличаются условия магмообразования зоны сочленения Восточной Камчатки с Алеутской дугой, которые привели к появлению магнезиальной магмы, от условий стационарного режима Курил и Южной Камчатки? В случае косой субдукции, переходящей в трансформный разлом, в Камчатско-Алеутском сочленении создаются условия вспарывания и раздвижения погружающейся Тихоокеанской плиты и внедрения вещества более горячей подсубдукционной мантии в надсубдукционную зону [70]. О высокой температуре расплава свидетельствуют ликвидусные температуры магнезиального оливина Заречного вулкана, составляющие ~1280oC [16]. Расчеты структуры поля температур [83], проведенные для объяснения природы современного вулканизма Срединного хребта, показали, что температура на контакте поддвигаемой пластины с более горячей мантией в таких условиях может повышаться на 200-300oС. При этом возможно не только плавление перидотита мантии под воздействием воды и других летучих компонентов с излиянием магнезиальных базальтов, но и частичное подплавление океанической коры на контакте ее с более горячей мантией и образование магнезиальных андезитов адакитового типа, как это наблюдается на подводном вулкане Пийпа [14,93,84]. О возможном подплавлении океанической коры в районе вулканов Шивелуч, Харчинский, Заречный свидетельствуют некоторые геохимические параметры, характерные для адакитов, в частности, высокие концентрации Sr, Ba, низкие концентрации тяжелых РЗЭ при высоких отношениях FeO/MgO, La/Yb и низких отношениях K/La[15,16].
Анализ возможных механизмов появления на Камчатке внутриплитного геохимического типа вулканических пород, который характеризуется повышенными, по сравнению с ОД-породами, концентрациями Ti, Nb и Ta и отсутствием Ta-Nb минимума на спайдерграммах Д.Вуда [92], проведен О.Н.Волынцом [89]. Им рассмотрены две возможные гипотезы. По одной из них [79], источником обогащения этими элементами внутриплитных магм служит та же самая субдуцируемая океаническая кора, которая определяет геохимическую специфику ОД-магм, но сценарии поступления Ti, Nb, Ta и других элементов в расплав различны.
Формирование ОД-магм происходит при плавлении вещества мантийного клина под воздействием флюидов, отделяющихся от поддвигаемой плиты. Низкие содержания Ta, Nb, Ti в ОД-магмах объясняются тем, что эти элементы, основным концентратором которых является рутил [84], обладают низкой растворимостью во флюиде. При более высоких температурах, превышающих 750oС, возможно частичное плавление базальта океанической коры в водонасыщенных условиях [78, см. также рис. 7б], и эти выплавки, в соответствии с экспериментальными данными [84], имееют более высокие концентрации Ti, Nb, Ta. По мнению О.Н.Волынца [89], по такому сценарию могут формироваться только верхнемиоценовые - плиоценовые К-щелочные базальтоиды Западной Камчатки, слагающие преимущественно субвулканческие тела. Нам представляется этот сценарий вполне правдоподобным, тем более, что на спайдерграммах Д.Вуда в этих породах проявлен Ta-Nb минимум, хотя и менее глубокий [89, Fig.10]. Добавим лишь, что на глубинах около 200 км источником большого объема флюидов из поддвигаемой плиты может служить дегидратация серпентина и талька [2], а более высокая температура может быть обусловлена внедрением более горячего подсубдукционного мантийного материала в более высокие горизонты при отрыве и погружении нижней части поддвигаемой плиты за счет ее отрицательной плавучести после остановки субдукции.
Для объяснения появления внутриплитных магм в пределах Восточной Камчатки и Срединного хребта О.Н.Волынец [89] привлекает гипотезу, по которой источником внутриплитных магм является горячее вещество обогащенных мантийных плюмов, взаимодействующее с деплетированной мантией MORB-типа. По предложенной О.Н.Волынцом модели, неактивная ("умершая") зона субдукции под Срединный хребет не препятствует подъему зарождающихся на больших глубинах мантийных плюмов в области мантийного клина над зоной субдукции, где в позднемиоцен-голоценовое время внутриплитные вулканиты проявлены вместе со значительно преобладающими ОД-породами. На Восточной Камчатке внутриплитные верхнемиоценовая щелочно-базальтовая и плиоценовая щелочнооливиновая серии формировались до ОД-этапа вулканизма, а в плиоцене новая зона субдукции отсекла мантийные плюмы от мантийного клина, в результате чего в плейстоцене и голоцене внутриплитный вулканизм не проявлен.
Не отрицая в целом вероятности такого сценария проявления внутриплитного вулканизма, хотим обратить внимание на следующие обстоятельства. Прежде всего, внутриплитные магмы характерны только для того сегмента ОД-системы, где произошел перескок зоны субдукции в конце миоцена - плиоцене (см. рис.5). Далее, внутриплитный вулканизм Срединного хребта проявлен вместе с островодужным как в пространстве, так и во времени, а на Восточной Камчатке предшествует ему. Прекращение ОД-вулканизма в Срединном хребте повлекло за собой прекращение и внутриплитного вулканизма, т.е. мантийный плюм иссяк вместе с затуханием ОД-вулканизма.
Исходя из этих обстоятельств, нам представляется более вероятным несколько иной сценарий проявления внутриплитного вулканизма. Если гипотеза отрыва субдуцированной части плиты под Срединным хребтом после прекращения субдукции в конце миоцена верна, то в образовавшуюся брешь будет внедряться более горячее вещество подсубдукционной части мантии (см. рис.6). В результате этого за счет повышения температуры более, чем на 80-100oС станет возможным частичное плавление слоев 1, 2 и 3А океанической коры в верхней части поддвигаемой пластины. Основная же масса вещества мантии будет плавиться под воздействием флюидов по ОД-сценарию. В результате будут выплавляться и типичные ОД-магмы, и магмы с повышенным содержанием Ti, Nb и Ta, т.е. магмы внутриплитного геохимического типа. При этом прекращение ОД-вулканизма за счет истощения флюидов из субдуцированной плиты повлечет за собой и прекращение внутриплитного вулканизма, так как оба эти типа вулканизма проявляются лишь при наличии источника воды, в данном случае за счет дегидратации серпентина и талька.