Смекни!
smekni.com

Природа и проявление геотектонических процессов: сейсмическая и вулканическая активность (стр. 2 из 4)

Естественно, что столь радикальные изменения в понимании задач сейсмологии должны были бы

-6отразиться и на лабораторных исследованиях в этой области. Однако пока что существенных изменений не произошло. По-прежнему здесь царит идея, что землетрясение есть образование трещины в сплошном массиве горной породы, тогда как, по новым представлениям, землетрясения происходят в блочной среде, горной породе, расчлененной трещинами. Горная порода, в которой развивается сейсмологический процесс не разрушается, она остается неизменной сложной блочно-иерархической системой в целом, не меняющей своих свойств. Землетрясения являются одним из проявлений самоорганизующегося процесса энергомассобмена горной породы с окружающей внешней средой. В расчлененную трещинами блочную горную породу извне втекают жидкости и газы,из недр земных поступает энергия в виде тепла, упругости, возникающей при геотектонических движениях и т.п.

Среда, горная порода, приспосабливается в процессе энергомассобмена, самостоятельно изменяя свою структуру, отдельные блоки несколько смещаются друг относительно друга, консолидируются в агрегаты из нескольких (иногда очень многих) блоков, реагирующих на внешние воздействия, как единое целое; наоборот, уже существующие агрегаты блоков могут разрушаться, распадаясь на несколько более мелких. Важным обстоятельством является то, что все эти процессы приспособления, протекающие в геофизической среде, происходят вблизи от некоторого положения равновесия, определяемого неким средним состоянием ее энергоемкости. Это состояние для такого огромного тела, каким является Земля, практически со временем не меняется (постоянно по крайней мере в течение миллионов лет). Об этом свидетельствует постоянство местоположение сейсмических очагов, обнаруживаемое из исторических данных (примерно за 2 тысячелетия).

Сотрудниками Института О.И.Гушенко, А.О.Мострюковым и В.А.Петровым разработан комплекс программ и рассчитаны карты полей напряжений земной коры Альпийского складчатого пояса на участке от Греции до Афганистана и впервые выявлена «блочность» структуры современного поля напряжений, отражающая, по-видимому, сложный процесс переработки тектонического плана региона и, несомненно, определяющая характер сейсмического процесса .

Исходя из изложенного, следует, что новые представления о сейсмическом процессе требуют радикального изменения методов лабораторного сейсмического эксперимента. Не вдаваясь в подробности, которые могут быть разработаны только при выполнении самих экспериментов, остановимся на важнейших условиях. Опыты должны ставиться так, чтобы образец, разрушаясь, не разваливался. Этого можно добиться, либо помещая его в прочную обойму, либо прикладывая усилие к малой части поверхности образца очень большого размера. Можно сказать, что изучение должно начинаться именно тогда, когда образец уже расчленен трещинами.Если, например, изучается образец (уже раздавленный) заключенный в обойму, то, последовательно изменяя нагружение, надо следить за акустическими, электромагнитными и др. эффектами во времени. Возможно, исследовать влияние поровой жидкости при постоянном нагружении и т.д. и т.п. В этих случаях мы имеем дело со средой, структура которой сформировалась в процессе разрушения сплошного образца.

Возможен также другой подход. В обойму закладывается предварительно раздробленный материал. В этом случае, объектом изучения является процесс консолидации (уплотнения) материала и его поведение на последующих стадиях нагружения (деформирования); разрушение, повторная консолидация и т.д.В качестве примера экспериментов по первому варианту предлагаем результаты исследований, проведенных в Обсерватории Борок лабораторией 512 ИФЗ АН на управляемом прессе. В бетонном блоке с размерами 30*20*10 см плексигласовыми пластинами имитировалось часто встречаемая в природе структура сочленения кулис глубинного разлома (вариант тектонической перемычки) .

Эксперименты проводились в режиме жесткого одно-двуосного нагружения с постоянной скоростью деформации 10-6 степени сек –1. Каждую секунду фиксировались: величина общей нагрузки (F), сближение пунсонов пресса (Cont.) величина прямо пропорциональная интегральной деформации модели; акустическая эмиссия, смещение берегов имиторованых трещин и локальные деформации в десяти точках модели.

В процессе систематического накопления интегральной деформации бетонный блок за счет роста хвостовых трещин отрыва растрескивался как минимум на четыре одномасштабные части, что контролировалось излучением акустической эмиссии. Как было установлено в эксперименте, и в закритическом состоянии модель (агрегат блоков) излучала акустические импульсы, основной особенностью которых является их регулярная повторяемость . Период повторяемости импульсов в серии экспериментов составлял от 40 до 120 сек. И явно зависел от заданной скорости интегральной деформации. Каждое возникновение импульса сопровождалось скачкообразным смещением берегов имитированных трещин, величины которого в пересчете на деформацию составляли 10-4 степени. Поведение кривых---- и ---- свидетельствует, что перед излучением импульса сопротивление среды резко возрастает. В процессе излучения происходит частичная потеря устойчивости,что подтверждается и скачками деформаций, а затем идет сложный процесс восстановления несущей способности агрегата блокой.Отличие экспериментов при одноосном нагружении заключается в том, что квазипериодическое акустическое излучение возникает раньше, чем при двуосном нагружении, т.е. уже на стадии упругопластического нагружения (Рис.2).Оценка энергии акустических импульсов по методике С.Д.Виноградова 5 дала результат 1.0-10.0 эрг. По формуле М.А.Садовского периоды повторяемости импульсов должны быть в пределах 45-100 сек.,что соответствует данным эксперимента.Следовательно, можно предположить, что зарегистрированное явление находится в общем, ряду свойств блочной среды.

В земных условиях по геологическим и инструментальным данным порядок скорости деформирования земной коры оценивается как 10-6 степени год-1. Т.к. в эксперименте мы задавали скорость 10-6 степени сек-1, то в первом приближении можно считать, что секунда в эксперименте эквивалентна году в природных условиях, т.е. акустические импульсы являются аналогами землетрясений с магнитудами 7 и выше, для которых периоды повторяемости превышают 40 лет. В большинстве случаев после основного импульса наблюдаются серии афтершоков, в редких случаях – форшоки.

Таким образом, можно сделать вывод о том, что именно такие импульсы,их последовательности и стадии деформирования среды в промежутках между вспышками акустической эмиссии и должны быть объектами лабораторных исследований.Здесь важным может оказаться не только слежение за перечисленными выше параметрами, но и детальная расшифровка высокочастотного акустического фона – аналога сейсмического фона регионов.

При всём многообразии геотектонических моделей, построенных в плане классических представлений так называемых «фиксистов» и «мобилистов», фундаментальные вопросы общей геодинамики, геоморфологии и вопросы исторической геологии, в принципе, пока что не получили решения. До сих пор науке неведома природа структур океанических впадин и материков, имеющих разительное отличие друг от друга.

Наряду с тем, существуют вопросы динамического свойства. Учёным совершенно не ясно, куда движутся и движутся ли материки вообще, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

Ниже мы рассмотрим непротиворечивую схему образования и эволюции земной коры, а равно, твёрдых оболочек других планет и их спутников, построенную вне связи и без привлечения механизма тепловой конвекции, наличие которой, фактически, оказывается вовсе необязательным для нормального развития небесных тел любого иерархического уровня.

Из сочетания разного рода атомов химических элементов, спонтанно возникающих в недрах пра-Земляного космогенного вихря (а равно, в недрах иного небесного объекта шарообразной формы), образуется «перегретое» вещество (магма). Вся эта субстанция формируется из «новоявленных» атомов сразу же по выходу их из южного зеркала адиабатической магнитной ловушки, представляющей торцевую часть космогенного вихря, и оттуда данная субстанция начинает свой путь уже в новом своём качестве. Ориентируясь по ходу простирания силовых линий геомагнитного поля, вся масса «перегретого» вещества, постепенно переходит в сферическую часть магнитного диполя, внедряясь в неё, и здесь, как бы растекаясь по сфере, вещество, удерживаемое магнитным каркасом, медленно течёт от одного геомагнитного полюса к другому, соизмеряясь с