Возможная степень опустошения очага определяет и возможный объем вулканических продуктов, который может быть выброшен за одно извержение. Этот результат важен для прогноза вулканической опасности.
Боковые внедрения магмы в стенки очага и канала приводят к отбору части расхода магмы и, соответственно, влияют на динамику извержения. Если такая боковая трещина возникает в очаге или вблизи него, она увеличивает отбор магмы из очага, но практически не влияет на расход в основном канале. Если же она возникает вблизи уровня фрагментации при достаточно протяженной зоне жидкостного течения, общий расход не изменится, ибо он определяется почти целиком сопротивлением канала на участке жидкостного течения ниже точки отбора, а расход выше точки отбора уменьшится на отбираемую величину. Уровень фрагментации и средняя плотность вещества в канале должны будут повыситься до уровня, соответствующего уменьшенному расходу. Повышение плотности требует дополнительного расхода вещества и эквивалентно дополнительному его отбору в верхней части канала, пока не будет достигнуто новое равновесие. В результате расход на выходе из канала в этот переходный период снизится значительно больше, чем на уровне появления трещины, и может возникнуть полная пауза в извержении. Оценку возможной продолжительности таких пауз позволяет сделать предложенная теория.
Такие оценки были проделаны автором для извержения Первого Конуса на Толбачинском извержении 1975-1976 гг. [10]. Перед началом извержения Второго Конуса в извержении Первого Конуса произошла серия полных пауз продолжительностью от минут до часов, после которых извержение возобновлялось практически с той же интенсивностью. Аналогичные паузы возникали и в деятельности Второго конуса перед извержением Третьего и образованием более мелких Четвертого конуса и лавовых котлов. Оценки показали, что для таких пауз было достаточно эпизодического отбора от нескольких до 20 процентов расхода вблизи уровня фрагментации. Отбор происходил эпизодами в результате дискретного толчкообразного раскрытия трещин, которое подтверждалось также серией слабых неглубоких землетрясений [1].
Если же значительный отбор магмы через боковые трещины происходит заметно ниже уровня фрагментации при малой протяженности зоны жидкостного течения, он может спровоцировать скачок расхода и переход в катастрофическую фазу. Такой эффект имел прорыв лавы по трещинам на внешних склонах конуса при извержении Везувия в 1906 году [4]. В этом случае отбор привел к кратковременному понижению уровня фрагментации, что оказалось эквивалентным укорочению канала, привело к уменьшению общего сопротивления и "запустило" катастрофический рост расхода. Отбор магмы через боковые трещины сыграл роль спускового крючка.
Наиболее известный и эффектный из спусковых крючков, запускающих катастрофическую стадию извержения - это обрушение постройки вулкана и последующий взрыв. Вся последовательность событий впервые была четко прослежена на вулкане Сент Хеленс в 1980 году [18]. Во время умеренной стадии извержения началось внедрение в тело вулканической постройки близповерхностной интрузии - "криптокупола", - деформировавшей эту постройку. В конце-концов склон потерял устойчивость и произошел грандиозный обвал, обнаживший криптокупол. Резкое снятие нагрузки привело к бурному выделению газа и его расширению. Расширяющийся газ раздробил и выбросил с большой скоростью материал криптокупола. После этого началась плинианская стадия, продолжавшаяся 9 часов, а через 3 недели после ее окончания начал выдавливаться экструзивный купол.
Здесь была цепочка из двух "спусковых крючков": обвал спровоцировал взрыв, а взрыв - плинианскую фазу, так как обвал и взрыв резко укоротили канал и увеличили его проводимость.
Инъекции глубинного вещества часто стимулируют начало нового извержения или его возобновление после длительной паузы с изменением состава вещества. Теоретическое моделирование этого процесса также возможно с помощью описанной теории.
Заключение
Разработанная теория объясняет механизм развития КЭИ, связывая режим выноса продуктов с характеристиками магматической системы вулкана. Описаны условия возникновения резких скачков интенсивности, представляющих опасность для окружающей среды и человека. Это оказалось возможным благодаря правильному выбору основных допущений и управляющих параметров. Оказалось, что резкие скачки расхода возможны в результате плавного монотонного изменения параметров.
Выяснена особая роль глубины очага, как расщепляющего параметра, и содержания летучих, определяющего критическую глубину очага, что создает предпосылки для прогноза возможности КЭИ на каждом конкретном вулкане по этим характеристикам. Такой прогноз явился бы шагом вперед по сравнению с прогнозами, основанными на простой экстраполяции истории активности вулкана.
Теория позволила выяснить роль и механизм действия "спусковых крючков" - внешних факторов, провоцирующих переход в катастрофическую стадию. Ясное представление о механизме действия спусковых крючков также имеет большое практическое значение, так как дает надежный инструмент для прогноза катастрофических изменений в ходе извержения, вызванных внешними по отношению к магматической системе событиями.
Еще одно возможное применение теории - это восстановление истории развития магматической системы вулкана на основе истории его активности, восстановленной геологическими методами.
Список литературы
1. Большое Трещинное Толбачинское Извержение (Камчатка 1975-1976 гг.). М.: Наука, 1984.
2. Кадик А.А., Максимов А.П., ИвановБ.В. Физико-химические условия кристаллизации и генезиса андезитов. М.: Наука, 1986. 158 с.
3. Ковалев Г.Н., Калашникова Л.А., Слезин Ю.Б. О связи между энергией извержений и периодами покоя действующих вулканов // Геология и геофизика. 1971. N3. С.137-141.
4. Лучицкий И.В. Основы палеовулканологии. М.: Изд-во АН СССР, 1971. Т.1. 480 с.
5. Макдональд Г. Вулканы. М.: Мир, 1975. 432 с.
6. Нигматуллин Р.И. Динамика многофазных сред. М.: Наука, 1987. Ч.1 - 370 с. Ч.2. 359 с.
7. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 607 с.
8. Риттман А. Вулканы и их деятельность. Пер. с нем. - М.: Мир, 1964. 427 с.
9. Слезин Ю.Б. Условия возникновения дисперсионного режима при вулканических извержениях // Вулканология и сейсмология. 1979. N3. С.69-76.
10. Слезин Ю.Б. Динамика дисперсионной струи при эксплозивных вулканических извержениях // Вулканология и сейсмология. 1982. N3. С.18-29.
11. Слезин Ю.Б. Механизм опустошения очага при образовании кальдер // Вулканология и сейсмология. 1987. N5. С.3-15.
12. Слезин Ю.Б. Влияние свойств магмы на характер извержения (результаты численного эксперимента) // Вулканология и сейсмология. 1994. N4-5. С.121-127.
13. Слезин Ю.Б. Основные режимы вулканических извержений // Вулканология и сейсмология. 1995. N 2. С.72-82.
14. Слезин Ю.Б. Механизм экструзивных извержений // Вулканология и сейсмология. 1995. N 4-5. С.76-84.
15. Токарев П.И. Некоторые закономерности вулканического процесса // Магмообразование и его отражение в вулканическом процессе. М.: Наука, 1979. 88 с.
16. Simkin T., Siebert L. Explosive Eruptions in Space and Time: Duration, Intervals, and a Comparison of the World's active belts // Explosive volcanism: Inception, Evolution and Hazards. - Washington D.C., National Academy Press, 1984. P.110-121.
17. Sparks R. S. J. The dynamics of bubble formation and growth: a review and analysis // J. of Volcanol. and Geotherm. Res. 1978. N 3. P.1-37.
18. The 1980 Eruption of Mount St.Helens. Washington . U.S. Geol Prof. Paper, 1250. 1980. 844 p.
19. Witham A.G., Sparks R.S.J. Pumice // Bull. Volcanol. 1986. V.48. P.209-223.