Смекни!
smekni.com

Катастрофическая деформация и последующая эволюция высокотемпературной геотермальной системы (стр. 7 из 8)

Обсуждение

В недрах кальдер Академии Наук и Карымскаяой длительное время, функционирует геотермальная система. Еее возраст, судя по датам фреато магматических взрывов в кальдере Академии Наук, превышает 6500 лет [2 ]. В кальдере Академии Наук до последнего времени существовало два очага разгрузки гидротерм: явный, в мааре вулкана Академии Наук, и скрытый, у северного берега. В 1996 г. возник третий, самый мощный, в истоке реки Карымская. В кальдере Карымская на пути восходящего движения высокотемпературных гидротерм возник промежуточный водонапорный резервуар. В неем, в результате взаимодействия глубинных и инфильтрационных вод с метасоматитами, формируются углекислые термоминеральные воды, разгружающиеся в виде мощных нарзанных источников. Все очаги разгрузки гидротерм, как и сама геотермальная система, связаны с вулканотектоническимивулканотектоническими структурами субмеридионального грабена. Через систему трещин этого грабена, которые играют роль основных каналов миграции гидротерм, осуществляется гидравлическая связь между резервуарами термальных вод кальдер Академии Наук и Карымскойая. Эти резервуары можно рассматривать как автономные гидротермальные системы, объединеенные общим источником теплового питания в единую геотермальную систему. Источникоами нагрева гидротерм служат тепло и высокотемпературные флюиды приповерхностных магматических очагов, обусловивших возникновение кальдер, или менее глубинный и более активный очаг или система очагов, образовавшихся в недрах грабена. В обоих случаях, трещины растяжения, формирующие грабен, являются и каналами для подъеема высокотемпературных теплоносителей, нагревающих современные гидротермы.

Сейсмические и вулканические события 1996 г. оказали сильнейшее воздействие на геотермальную систему. В свою очередь, массы подвижных высокотемпературных газо-водных флюидов и колоссальная тепловая энергия, аккумулированные на относительно небольшой глубине в геотермальных резервуарах, не могламогли не повлиять на подготовку и ход этих событий

Химический и газовый состав вод несетнесет большой объемобъем информации о процессах, протекающих в недрах, и может служить чувствительным индикатором состояния гидротермальной системы. В таблицах 1, 3, 4,собраны наиболее представительные анализы термоминеральных вод и газов кальдер Академии Наук и Крымскойая за 1996 -2000 гг. и некоторые предыдущие годы, отражающие гидрохимические различия между группами источников и временные изменения внутри групп. Они уже комментировались при описании термопроявлений. Отчеетливо выделяются три основных химических типа гидротерм: 1) - углекисло-азотные, хлоридно-натриевые щелочные (рН>9), высококремнистые (H4SiO4>400 мг/л) источников Академии Наук (см. табл. 3); 2) - азотно-углекислые, сульфатно-хлоридные, натриевые слабо щелочные и нейтральные, высококремнистые (H4SiO4>300 мг/л) новых источников (см. табл. 4 )); 3) - углекислые, хлоридно-гидрокарбонатно-сульфатные, натриево-магниевые, высококремнистые (H4SiO4>200 мг/л), слабокислые (рН 6 - 7) Карымских источников .

Рис. 5

Воды Карымского озера также превратились в минеральные, типа "фумарольных терм": кислые (рН<3,3), сульфатные со сложным катионным составом. Они постепенно нейтрализуются (в 2000 г. рН 4,7) и видоизменяются в сторону увеличения концентрации хлорида натрия и снижения сульфатности (см. табл. 1, NN 3 - 7).

На диаграмме эволюции химического состава (рис. 5 ) хорошо видны сходства и отличия вод основных групп термальных источников и изменения их макрокомпонентного состава за 4 года.

Очевидно, что за период с 1938 года значимых изменений в составе вод основного участка разгрузки гидротерм в кальдере Академии Наук (гр. I) не произошло. Изменялись лишь воды периферийных групп (II - IV). На сейсмотектонические события 1996 г. источники отреагировали только резким увеличением дебита. По-видимому, каких либо качественных преобразований в глубинном тепловом и флюидном питании здесь не происходит.

Важнейшим гидрогеохимическим последствием катаклизма 1996 года надо считать возникновение мощного очага разгрузки высокотемпературных термоминеральных вод на северном берегу озера и в истоках реки Карымская. Новые сульфатно--хлоридные, натриевые гидротермы отличаются по составу от всех существовавших здесь ранее (см табл. 3 и 4 ). Воды источников V, VI и VII групп различаются между собой не по гидрохимическому типу, а по величине минерализации, т. е. по степени смешения с пресными водами. Их состав к 2000 г. ещее не стабилизировался, особенно в VII, самой большой и неоднородной группе, и ещее рано говорить о тенденциях перемен (см. рис. 5 ). По большим, выше, чем в источниках Академии Наук, концентрациям хлоридов натрия в гидротермах VII группы можно заключить, что в них наиболее высоко присутствие флюида высокотемпературного геотермального резервуара. По гидрохимическим данным именно здесь, а не в эксплозивной воронке, вскрылись основные каналы разгрузки глубинных вод высокотемпературной геотермальной системы. Благодаря высокой минерализации и очень большим дебитам, новые гидротермы играют главную роль в процессах выноса и переотложения вещества в геохимической системе кальдеры Академии Наук.

В кальдере Карымская гидрохимические условия разгрузки гидротерм сложнее. Из-за приповерхностного смешения с инфильтрационными водами появляются "разбавленные" источники. Сильнейшее влияние на конфигурацию участков разгрузки оказали грязевые потоки катастрофических паводков, залившие большую часть термального поля и, сейсмические процессы, напротив, раскрывшие новые водовыводящие трещины. Несмотря на это, гидрохимический тип воды основных источников уже 35 лет остаеется прежним, а наблюдаемые незначительные перемены являются скорее колебаниями, чем изменениями. Небольшое, ~10%, увеличение минерализации отмечалось только в 1997 г. Следовательно, извержение вулкана Карымскогоий, у подножия которого находятся источники, не отразилось на составе гидротерм. Вода высокодебитных источников на трещинах, открывшихся у восточной границы термального поля, гидрокарбонатная и менее кислая с высоким содержанием магния . Наблюдаемые здесь высокие концентрации Не (до 0,2%) являются признаком разломных зон глубокого заложения.

Карымские термоминеральные водыводы, безусловнобезусловно, являются лечебными. Они относятся к группе редко встречающихся углекислых высококремнистых магниевых вод, очень ценных в бальнеологическом отношении. Они содержат в повышенных концентрациях и биологически активные микрокомпоненты: Fe, As, Sb, Sr и др. Благоприятное сочетание состава и комфортной температуры с очень высокими дебитами (>700 л/с) делает месторождение термоминеральных вод кальдеры Карымская уникальным. Это самое большое на Камчатке и в России месторождение углекислых термоминеральных вод.

Механизм единовременной инъекции в озеро почти 70 тысяч тонн серы заслуживает специального обсуждения. Самым простым объяснением этого явления может быть привнос в виде SO2 эруптивными газами. В большинстве опубликованных анализов высокотемпературных вулканических и теоретически рассчитанных "магматических" газов весовая концентрация соединений серы (S+SO2+SO3+H2S) составляет n .10-4 и, очень редко, 10-3. Более 0,95 массы газов приходится на Н2О, остальное - СО2, Н2, галогеноводороды и т. п. [15, 22]. Если эруптивные газы извержения 1996 г. имели аналогичный состав и также более чем на 95% состояли из Н2О, то вместе с 7.107 кг серы в озеро должно было поступить (сконденсироваться) n.1010 -1011 кг водяного пара(107 -108м3 конденсата), что сопоставимо с объемом озера (4,6.108м3). Тепловая энергия этого количества пара, принимая минимально возмможную энтальпию ~2,5.106 Дж/кг, будет составлять n.1016 -1017Дж. С.М. Фазлуллин оценил поглощенную озером энергию в 1016 Дж [24]. Казалось бы, что эта величина близка к вычисленной нами по геохимическим данным, но, в отличие от нашей, она "по умолчанию" включает тепло, отданное твердыми продуктами извержения. При сопоставлении оценок это тепло надо приплюсовать и к нашим цифрам и тогда разница далеко выходит за пределы одного порядка. Не решенной остаеется и проблема водной составляющей (конденсата) гипотетического эруптивного газа: из его объеема n.107 - 108 м3 только n.106 м3 можно было бы "списать" на эруптивные облака (1,3 .106 м3 [14]) и катастрофический паводок (1,1.104 м3 [24]). Следовательно, либо концентрация серы в газе была в десятки раз больше принятой нами, либо привнос серы одновременно осуществлялся и другим агентом.

Одновременно с 70 тыс. тонн серы в 1996 году в озеро поступило 20,4 тыс. тонн Cl-. Это в ~30 раз больше, чем в предыдущие годы, и в ~20, чем в последующие (см. табл. 2, рис. 2 ). Концентрации хлора в магматических газах обычно на 1 - 2 порядка ниже концентрации серы, поэтому его вынос в газовой фазе в больших количествах мало вероятен. Для транспортировки такого количества хлорида в растворе потребовалось бы (2- 4)107м3 воды (0,1 - 0,2 объемаобъема озера), аналогичной по составу парогидротермам Академии Наук.

Приходится предполагать, что при извержении в озере в транспортировке серы и хлора участвовала какая то высококонцентрированная субстанция, возможно, высоко минерализованный флюид глубинных околомагматических зон геотермальной системы.