Смекни!
smekni.com

О соотношении базальтового и андезитового вулканизма глазуновской свиты КМА (стр. 1 из 2)

В.М.Холин, Ю.Н.Стрик, Воронежский государственный университет

Изучение опорных разрезов и сравнение их с эталонными типичных геодинамических обстановок позволило всю совокупность магматических образований глазуновской свиты упорядочить в единый временной формационный ряд, отражающий сложный возрастно-поступательный характер эволюции магматизма.

Изучение структурно-вещественных комплексов с позиций геодинамического анализа (ГА) в пределах КМА вскрыла многочисленные проблемы и противоречия в существующих схемах стратиграфии и магматизма региона. К числу проблемных вопросов относится и вопрос соотношения базальтового и андезитового вулканизма, входящих в состав глазуновской толщи.

Вулканогенные образования, входящие в состав глазуновской толщи развиты в северной части Воронецко-Алексеевской синформы. Существует несколько точек зрения в отношении их возраста, структурно-тектонической обстановки формирования и формационного положения. Е.М.Крестин [1,2,3] относил вулканогенные породы глазуновской свиты к андезит-базальтовой формации раннепротерозойского возраста. В качестве комагматичной интрузивной фации им рассматривался габбродиорит-гранодиоритовый стойло-николаевский комплекс. Н.М.Чернышов [4,5,6] объединяет вулканогенные породы глазуновской свиты (толщи) с габбро-долеритами смородинского комплекса в состав единой вулкано-плутонической ассоциации раннепротерозойского возраста (трапповая формация этапа стабилизации платформы). И.Н.Быков [7,8] выделяет в составе свиты две вулканические формации нижнепротерозойского возраста: трапповую и более позднюю андезитовую. Комагматичность интрузий смородинского комплекса и вулканитов глазуновской свиты отрицается.

Несмотря на противоречивость и взаимоисключаемость рассматриваемых точек зрения в основу генетических и формационных построений во всех случаях положено изучение одного и того же стратотипического разреза, вскрытого скважинами 2926 и 2916 на Никитовском участке (рис.1).

В строении глазуновской свиты принимают участие две толщи.Нижняя базальтоидная и верхняя андезитовая. Базальтоидная толща исключительно однородна по своему видовому набору пород, сложена только базальтами. Видимая мощность по скважине 2926 составляет 250 метров. Породы участками рассланцованы и имеют устойчивый парагенезис минералов: актинолит+биотит-альбит-кварц± ±эпидот, что указывает на проявление процессов регионального метаморфизма (фация зеленых сланцев, биотитовая зона). Наряду с наблюдаемыми реликтовыми микролитовой и пойкилитовой микроструктурами в некоторых интервалах отмечена полная утрата породами первичных структур и образование плагиоклаз-амфиболовых (апобазальтовых амфиболитов) с типичными метаморфическими структурами: фиброгранобластовой, гетерогранобластовой. В скважине 2916 в верхней части разреза отмечены разновидности, содержащие реликтовые вкрапленники плагиоклаза.

Толща андезитов столь же однородна по своему видовому набору: пирокластические, эффузивно-обломочные и субвулканические фациальные разновидности вулканических пород представлены исключительно андезитами порфировидного облика. Видимая мощность андезитовой толщи 740 метров. В пирокластических разностях встречены единичные обломки базальтов и апобазальтовых амфиболитов по минеральному составу и структуре идентичных породам нижней базальтовой толщи. Кристаллокласты туфов представлены плагиоклазом, не отличающимся по составу от вкрапленников плагиоклаза андезитов.

Базальтовая и андезитовая толщи разделены пачкой конгломерато-брекчий мощностью 53 метра, в строении которой выделяются три трансгрессивных ритма. Обломки представлены базальтами и апобазальтовыми амфиболитами, аналогичные таковым нижней толщи. Цементом является мелкозернистый кварц-полевошпатовый материал.

В скважине 2926 отмечается внедрение интрузии габбро-долеритов смородинского комплекса в нижнюю базальтовую толщу и дайки долеритов в верхнюю вулканогенно-обломочную толщу андезитового состава. Контакты с вмещающими породами резкие, отчетливо выражены в эндоконтакте зоны закалки.

Данные по изучению эталонных андезитбазальтовых формаций показали, что в разрезах наиболее часто встречается в значительной степени случайное переслаивание близких по основности типов пород: базальтов, андезито-базальтов, андезитов и их пирокластических разностей, причем мощности отдельных покровов обычно не превышают первого десятка метров. Резкой смены выдержанных по составу пачек пород многосотметровой мощности в пределах одного вулканического комплекса никем не отмечается. А.Ф.Белоусов [9] утверждает, что с позиции концепции породных групп в разрезах должно наблюдается переслаивание проТаблица 1

Средние химические составы пород (мас.%) глазуновской свиты и габбро-долеритов смородинского комплекса

дуктов различных породных групп. По мнению В.И.Чернова [10] поступление магм из разобщенных источников обуславливает чередование потоков вулканитов различного состава в едином разрезе. Следует отметить, что по химическому составу исследуемые базальты значительно отличаются от типичных базальтов андезитовых формаций [11].

Анализ эталонных трапповых формаций показывает, что базальтовые ассоциации чехла древних платформ сопровождаются главным образом терригенными породами, имеющими признаки наземного отложения. Для траппов выявляется, прежде всего, общая меланократовая тенденция базальтоидов. Распределение базальтоидов по меланократовости, как правило, оказывается квазиоднородным. Лейкократовый уклон не характерен для платформенных базальтовых ассоциаций [9]. К сравнительно редким исключениям относится хаканчанская свита на севере Сибирской платформы. Образования свиты характеризуются сильной изменчивостью литологического состава, как по разрезу, так и по простиранию. Для нее характерно проявление эксплозивной деятельности, сопровождающейся наиболее высокой кремнекислотностью продуктов эффузивного магматизма (андезито-базальты, SiO2-51,8%). Представляет собой слабодифференцированную серию базальтовой магмы и принадлежит к базитовой формации [12]. Следует отметить, что региональный метаморфизм, даже в докембрийских траппах, приводит к изменениям дозеленосланцевой ступени, если породы не подверглись глубокому захоронению и складчатости [9].

Анализ эталонных андезитовых формаций показывает, что андезитовая формация наибольшего объема достигает среди коллизионных вулканитов [13]. Для нее характерны крупные полигенные стратовулканы, формирующиеся в наземных условиях. Наиболее распространенные фации – пирокластические; лавы и субвулканические тела обычно присутствуют в подчиненных количествах. Фации склонов вулканов и удаленные фации отчетливо стратифицированы. Мощности пачек варьируют от 100 до 1000 м. Породам андезитовой формации свойственны эвпорфировые структуры (количество вкрапленников от 10-15 до 30-40%) с единым общим набором порфировых выделений: плагиоклаз, моноклинный и ромбический пироксен, амфибол.

Факт резкой смены в разрезе однородных по своему внутреннему строению пачек различного состава значительной мощности, аналогичной глазуновской толще, объединяемых в одну формацию, совершенно не типичен.

Как отмечалось выше андезито-базальты в трапповых формациях, являются продуктами кристаллизационной дифференциации из базальтовой магмы. Базальты и андезиты глазуновской свиты значительно отличаются друг от друга по минеральному и химическому составу (табл.1). Метаэффузивы основного состава имеют ильменитпирротиновую ассоциацию. В них отсутствуют характерные для андезитовых порфиритов магнетит, гематит, титаномагнетит, ильменогематит, халькозин и борнит.

Изучение петрохимических особенностей вулканических образований глазуновской толщи с помощью факторного анализа свидетельствует о наличии двух индивидуальных петрохимических групп с не перекрывающимися составами во всех трех факторных плоскостях (рис. 2). Первый фактор (F1, 60% общей дисперсии) CaO, MgO, FeO, TiO2 антогонистичныSiO2, K2O, Al2O3, Na2O. Второй фактор (F2, 15% общей дисперсии) CaO,FeO, обратно скоррелированы с группой оксидов Na2O, TiO2, Fe2O3. Таким образом, петрохимическая изменчивость пород по первому и второму факторам отражает процесс кристаллизационной дифференциации при меняющемся режиме щелочей, что имеет место в производных контрастных магматических сериях: толеитовой и известково-щелочной, если они рассматриваются в одной совокупности. Третий фактор (F3, 12% общей дисперсии ) TiO2, K2O, CaO, Al2O3 противопоставляются Na2O и MgO. Однако сила их связей не достигает установленного уровня значимости.

Рис.2. Факторная диаграмма пород глазуновской свиты.

Рис.3. Диаграмма нормированного распределения РЗЭ в вулканогенных породах глазуновской свиты.

Исходя из контрастности петрохимических объединений, следует признать, что сериальные различия предопределены глубинными факторами,

а не дифференциацией исходного расплава, единого для этих комплексов. То есть в составе глазуновской свиты целесообразно выделять два самостоятельных комплекса: толеит-базальтовый и известково-щелочной.

Анализ распределения редкоземельных элементов (рис.3, табл.2) показывает тождество отношений Eu/Eu* в андезитах (26,70) и базальтах (21,04) (отсутствие на графике Eu-минимума в андезитах). Такое положение позволяет предполагать происхождение андезитов из основных расплавов при фракционировании амфибола, что противоречит наблюдаемым вкрапленникам в базальтах. Реально наблюдаемым вкрапленником в базальтах является плагиоклаз. При фракционной кристаллизации со значительной ролью фракционирования плагиоклаза должен наблюдаться дефицит европия в андезитах по отношению к базальтам. Из выше сказанного можно сделать вывод, что андезиты не являются остаточными дифференциатами базальтовой магмы.