Смекни!
smekni.com

Гидрогеохимическая проявленность ореолов техногенного замещения подземных вод в связи с Ларинским полигоном ТБО г. Донецка (стр. 2 из 3)

Приведенные средние показатели ТБО в течение времени меняются в связи с постоянным изменением структуры и вещественных параметров отходов. В процессе их уплотнения отжимается влага, которая способствует протеканию окислительно-восстановительных реакций, сопровождающихся ростом температуры. При окислении органических веществ возникают различные кислоты, повышающие агрессивность среды внутри толщи отходов. Органические вещества теряют влагу, перегорают и уплотняются. Металлы окисляются, переходят в подвижное состояние, выщелачиваются окружающей агрессивной жидкостью (фильтратом) и далее через зону аэрации мигрируют в водоносные горизонты. Большие объемы фильтрата возникают, когда отходы складируются без должного уплотнения и послойной изоляции инертными грунтами (суглинками). Этому способствуют также атмосферные осадки, обогащенные кислородом, фильтрующиеся сквозь толщу отходов. Они с одной стороны разбавляют фильтрат, с другой поставляют дополнительные порции влаги, обогащенной кислородом, что ускоряет протекание химических реакций, и, наконец, увеличивают объемы агрессивного фильтрата. Известно также, что органика является питательной средой для разнообразных микроорганизмов [2,3], ускоряющих процесс переработки слоя отходов. Комплекс химических и биохимических реакций приводит к попутному образованию биогаза, главными компонентами которого являются метан и сероводород. Период полного физико-химического и биохимического преобразования ТБО зависят от условий эксплуатации полигона и могут составлять 5-10 лет. После этого наступает относительное динамическое равновесие, когда процессы преобразования слоя отходов не отличаются от изменений, наблюдаемых в природных отложениях.

Влияние полигона на геологическую среду участка выражено также в физико-химическом преобразовании подстилающих слой отходов пород зоны аэрации и водовмещающих пород. Это происходит под воздействием проникающего из толщи отходов химически агрессивного водного раствора — фильтрата. В основании отходов залегает маломощный слой делювиальных суглинков и элювиальных образований. Ниже основанием полигона служат известняки карбона - плотные тонкозернистые породы, состоящие из органогенного и метаморфогенного кальцита с примесью глинистых минералов, обломочного и регенерационного кварца. Известняки создают условия существования вод с повышенной щелочностью. Поэтому фильтрат, проникающий из толщи отходов и имеющий кислотную реакцию, крайне агрессивен к известнякам. Органические и минеральные кислоты, растворенные в фильтрате, вступают в реакцию с карбонатными минералами, растворяют их с образованием углекислоты, ее производных, а также разнообразных соединений кальция, магния и др. металлов. Органические соединения при этом могут концентрироваться в известняках в виде прожилков и вкрапленности, заполняя трещины и разнообразные поры.

Вместе с органикой локализуются микроэлементы, в том числе тяжелые металлы. Нарядуу с ними в раствор переходит углекислота, способная образовывать достаточно устойчивые комплексные соединения, обуславливающие миграцию многих тяжелых металлов. В результате вокруг полигона образуется ореол замещения первичных пород вторичными или эпипородами. Наиболее измененные породы контролируют очаги загрязнения подземных вод. Масштабы проявления данных ореолов зависят от агрессивности поступающего со стороны полигона фильтрата, его количества, характера водовмещающих пород и гидродинамических условий территории. Достаточно мощная зона аэрации (более 10 м) и подстилающие отходы известняки являются благоприятными факторами, способствующими очищению фильтрата и сокращению ореола эпигенетических преобразований.

Однако в процессе бурения скважин структурно-вещественные признаки данного замещения были отчетливо установлены в скважине №6, пробуренной в основании дамбы на юго-восток от границы полигона. В суглинках желто-бурого цвета по мере приближения к водоносному горизонту отмечались постепенно усиливающиеся изменения, проявленные в виде прожилково-вкрапленных агрегатов черного цвета, насыщенных органическим веществом. Плотность вторичных изменений постепенно увеличивалась, и на границе водоносного горизонта породы стали однородными, имели черную окраску и характерный запах биогаза. Обилие растворенных в фильтрате органических веществ по мере продвижения сквозь толщу пород сорбируются и осаждаются поверхностью первичных минералов пород. При этом часть минералов первичных пород может выщелачиваться, уступая место новообразованиям. С течением времени вокруг полигона формируется закономерно построенный ореол замещения первичной геологической среды. Следы замещения были установлены на значительном удалении от полигона в скважинах, расположенных в долине р. Кальмиус на расстоянии 200-350 м от границы площадки складирования. Они проявлены прожилково-вкрапленными новообразованными агрегатами темно-серого цвета. Таким образом, ореол замещения со стороны полигона распространяется в сторону р. Калъмиус в соответствии с направлением движения подземного потока, практически достигая ее русла.

Положительным фактором служит то, что изменения водовмещающих пород способствуют локализации процесса загрязнения грунтовых вод, препятствуют распространению загрязненных техногенных вод. Отфильтрованная сквозь толщу пород вода очищается, а загрязненные компоненты связываются веществом вмещающей среды, которая при этом изменяется. В его центральных зонах ореола замещения породы насыщаются загрязняющими компонентами. В этих участках наступает равновесие в системе водовмещающая порода — загрязненная фильтратом вода, а процесс очищения воды продолжается в промежуточных и во внешних зонах ореола замещения, границы которых постепенно удаляются от полигона, ореол при этом расширяется.

В связи с этим вокруг площадки складирования отходов формируется вторичный источник загрязнения подземных вод — ореол эпигенетического замещения, деятельность которого будет отмечаться после закрытия и рекультивации полигона и может продлиться в течение десятков лет. При этом полного восстановления естественных параметров водовмещающей среды на данном участке не произойдет.

В результате проведенных работ (бурение скважин, отбор проб воды из скважин, колодцев и поверхностных водоисточников) были установлены закономерности строения ореола загрязнения, масштабы и интенсивность его проявления.

По уровню минерализации большая часть подземных вод исследуемой территории относится к категории сильно солоноватых с содержанием солей более 3 г/дм3 . Полигон ТБО однозначно влияет на уровень минерализации подземных вод прилегающей территории. Максимальная минерализация подземных вод (6,26 мг/дм3) установлена в скважине, расположенной в основании дамбы к юго-востоку от полигона, где отмечается выход фильтрата на поверхность. Примерно такая же величина минерализации характерна для выходящего из под земли и стекающего в р. Кальмиус фильтрата. Несколько пониженный уровень минерализации подземных вод установлен к востоку от полигона в колодце по ул. Воровского, д. 4 и в скважинах, пробуренных в долине р. Кальмиус. Высокий уровень минерализации (4,3—5,0 мг/дм3) характерен для вод в б. Четвертная. С учетом фонового уровня минерализации в 2,5 г/дм3, однозначно отмечается влияние полигона с формированием зонального распределения солей в ореоле загрязнения.

Хлориды образуют локальный контрастный ореол, непосредственно связанный с площадкой складирования отходов. Максимальные концентрации в 6,5-7,25 ПДК установлены на участке выхода фильтрата на поверхность. По мере удаления от площадки складирования отходов концентрация хлоридов резко падает. Зона распространения хлоридов контролирует максимальный уровень загрязнения подземных вод. Ее границы незначительно распространяются в стороны от полигона.

Сульфаты оконтуривают полигон с востока и севера, располагаясь по периферии зоны распространения хлоридов. В присутствии высоких концентраций хлоридов сульфаты в воде неустойчивы и выпадают в осадок. По мере снижения концентрации хлоридов их место в воде занимают сульфаты и постепенно начинают преобладать. Поэтому насыщенные сульфатами воды как бы окаймляют хлоридные воды. Между тем установленные закономерности подтверждают наличие сформированного зонально построенного ореола замещения природных вод, который занимает все пространство от б. Четвертной до р. Кальмиус.

Преобладающим катионом в водах прилегающей к полигону территории является натрий. Натриевые воды достаточно широко распространяются от границ полигона, захватывают б. Четвертная и достигают русла р. Кальмиус на участке выхода фильтрата. В долине р. Кальмиус к северо-востоку от полигона отмечаются кальций-натриевые и натрий-кальциевые воды.

Таким образом, вокруг полигона формируется вторичная техногенная гидрохимическая зональность, проявленная закономерной сменой хлоридно-натриевых вод сульфатно-натриевыми и далее сульфатными кальций-натриевыми и натрий-кальциевыми водами. Большая часть микроэлементов также вполне закономерно распределяется в ореоле замещения.

Железо и марганец образуют контрастные локальные ореолы, контролируемые площадкой складирования полигона. Высокие концентрации до 9-11 ПДК для железа и 144-165 ПДК для марганца отмечаются на участке выхода фильтрата. По мере удаления от полигона концентрация данных элементов в подземных водах резко падает и в большинстве скважин и колодцах имеет повышенные, но редко превышающие нормативные, показатели (0,1 мг/дм3 для марганца и 0,3 мг/дм3 для железа).

Марганец и железо часто в природных и техногенных процессах ведут себя практически одинаково, поэтому характер распространения их ореолов совпадает. Для фильтрата, образующегося при преобразовании ТБО, характерны высокие концентрации марганца и железа, которые выщелачиваются при коррозии металлического лома, окисляясь, переходят в раствор. Устойчивость этих металлов в фильтрате обусловлена восстановительной бескислородной обстановкой и низким рН (5,5—6,5). Миграция марганца и железа прекращается на окислительных барьерах или при повышении щелочности раствора. Здесь они окисляются до трехвалентной (для железа) и четырехвалентной формы (для марганца) и выпадают в осадок, образуя корочки, прожилки и вкрапленники во вмещающих породах. При прохождении фильтрата сквозь толщу известняков всегда наблюдается рост рН. Известняки нейтрализуют кислотные свойства фильтрата. Уже на этой стадии может наблюдаться выпадение окислов и гидроокислов железа и марганца. При смешивании фильтрата с грунтовыми водами, обогащенными кислородом, также происходит дополнительное осаждение железа и марганца.