.
В.П. Орлов, Л.В. Оганесян
Методологические проблемы прикладной металлогении - геологического прогноза -являются основой оптимизации геологоразведочных работ и, образно говоря, определяют правила "игры" на всех стадиях геологических исследований.
Термин "геологический прогноз" традиционно используется в двух значениях. В одном случае, как правило, имеется в виду ранняя стадия геологоразведочного процесса. В таком понимании данный термин является неким символом и не имеет ничего общего с общепринятым в теории прогностики термином "прогноз" (3). Во втором случае имеется в виду предсказание некоторого геологического события, чаще пространственных координат, количественных и качественных характеристик изучаемого или подлежащего изучению геологического объекта. В такой трактовке прогнозы присущи всем стадиям геологоразведочных работ. Они имеют особо важное значение при принятии межстадийных решений, т.е. при оценке возможных последствий дальнейших действий. В этом смысле геологический прогноз способствует принятию решения в пограничных, т.е. наиболее сложных, ситуациях. Важная особенность геологического прогноза заключается в том, что его достоверность, до проведения дорогостоящего комплекса геологоразведочных работ, может быть оценена только критериями, в основе которых заложены неоднозначные генетические представления. Даже после такой эмпирической проверки не всегда можно строго сформулировать критерии оценки достоверности отрицательных результатов ранее выданных положительных прогнозов. Что же касается отрицательных геологических прогнозов, то их достоверность вообще не проверяется. Эти факторы крайне усложняют проблему совершенствования теоретических и практических основ геологического прогнозирования, поскольку приводят к формированию незакономерно усеченных статистических выборок, в которых отсутствуют не только отдельные ветви, но и образуются интервалы "незнания". В целом же проблема выбора критериев оценки надежности геологических прогнозов остается одной из важнейших задач прикладной металлогении. Эта задача осложняется не только отсутствием эмпирических данных об истинности отрицательных прогнозных заключений, но и относительно небольшой выборкой реализованных положительных прогнозов при большом числе признаков прогнозируемых объектов или процессов. В связи с этим важное значение приобретает создание экспертных систем, содержащих базы не только фактографических данных, но и знаний, включающих интуицию специалиста, в основе которой тоже лежит знание, но в мегаинтегрированном виде. Геологическая наука сейчас только приступает к созданию этих сложнейших интеллектуальных систем. При геологическом прогнозировании создаются логические модели, отражающие связи и взаимоотношения между комплексом геологических, геофизических, геохимических, минералогических и других свойств изучаемого геологического пространства, с одной стороны, и скоплениями полезных ископаемых, с другой. Объективной основой для решения подобных задач является реальная анизотропия геологического пространства и рассмотрение искомого объекта в качестве аномалии в этом пространстве. Общеизвестно, что геологический прогноз на любых стадиях геологоразведочных работ осуществляется в условиях дефицита информации. Но важно отметить то, что этот дефицит принципиально не может быть ликвидирован. Он обусловлен не только невозможностью полного выявления свойств и взаимосвязей объектов, образующих геологическое пространство. Дело в том, что, частично компенсируя дефицит информации на одном иерархическом уровне прогнозных построений, исследователь оказывается опять же в условиях дефицита информации при изучении геологических объектов на других уровнях. И это неизбежно, поскольку по мере увеличения детальности исследований меняются порядок изучаемых объектов, предполагаемая их структурно-вещественная организация, цели прикладных металлогенических исследований и вся признаковая система изучаемого геологического пространства. Корни дефицита информации кроются также в конвергентности и дивергентности геологических процессов. Именно на эти общеметодологические проблемы конвергентности и дивергентности в своих классических трудах обращал особое внимание В.И. Смирнов - на конкретных примерах и на основе глубокого научного анализа огромного многообразия геолого-минерагенических ситуаций. Конвергентность и дивергентность, лежащие в основе естественных процессов и генетической сущности природных объектов, в том числе геологических, определяют их неисчерпаемое многообразие. В связи с этим геологический прогноз любой детальности на любом отрезке геологоразведочного процесса является вероятностным. Ему свойственны все особенности вероятностных процессов и вероятностных заключений. Это означает, что прогнозные заключения, которые формулируются в результате прикладных металлогенических исследований и лежат в основе стратегии и методики геолого-разведочных работ, имеют определенный уровень вероятностных оценок и, следовательно, содержат ошибки двух родов. Ошибка первого (I) рода заключается в том, что может быть отбракован объем геологического пространства, в пределах которого имеется искомый объект. Ошибка же второго (II) рода возникает, когда на самом деле в пределах изучаемого объема интересующий объект отсутствует. Иначе говоря, под ошибкой I рода следует понимать случай, когда сказано "нет", а на самом деле "да". Ошибка же II рода означает : сказано "да", а в действительности - "нет". Интересно отметить, что изучение достаточно большого объема ретроспективного материала по результативности прогнозно-металлогенических и других геологических заключений показывает: геологи чаще избегают ошибки I рода. В результате повышается уровень ошибки II рода. Создается впечатление, что геолог, стремясь обезопасить себя от ошибок I рода, интуитивно расширяет контуры площадей или опускает глубины прогноза и увеличивает количество выделяемых перспективных объектов, как бы смягчая критерии принятия положительных решений. Иначе говоря, специалист больше склонен к положительным заключениям. Причины, обусловливающие такое положение, имеют глубокие экономические и психологические корни. На специалиста давит опасность пропуска рудоносного объекта, пропуска своего шанса, определившего целеустановку и мотивы его трудовой деятельности (1). Поскольку о наличии (или отсутствии) интересующего объекта в данном объеме геологического пространства можно говорить только с определенной вероятностью, то возможность появления ошибок I и II родов никогда нельзя исключить. Здесь создаются ножницы: снижение уровня ошибки одного рода повышает уровень ошибки другого рода. Следовательно, требуется выбрать такую стратегию геолого-разведочных работ, которая обеспечила бы минимальный уровень суммарных потерь, возникающих из-за ошибок I и II родов. Этот принцип является основополагающим в любых "игровых" ситуациях, когда решение принимается в условиях дефицита информации и средств. Решение задачи по выбору уровней ошибок I и II родов усложняется в условиях слабого знания цены ошибок, что, как правило, имеет место при проведении геологических исследований и геологоразведочных работ. Именно по этим причинам "разумный смысл" давно подсказал принцип поэтапного проведения геологоразведочных работ. Это означает, что комплекс работ и процедур, определяющих суть геологического прогнозирования, ориентируется не на прямые поиски искомого объекта на конечной точке технологической цепочки, а на последовательное сокращение объема, внутри которого этот объект находится (2). Каждый последующий шаг геологоразведочных работ направлен на получение информации, которая может уменьшить неопределенность о пространственном расположении и свойствах конечного объекта. Поскольку любая задача решается в условиях ограниченности ресурсов, в том числе времени (важнейшего составляющего ресурсов), а каждый шаг требует затрат части ресурсов, возникает задача минимизации количества шагов (стадий, этапов). Но при этом возрастает опасность допущения ошибки I рода, так как минимизация числа шагов в условиях ограниченности ресурсов может быть достигнута только в результате значительного сокращения исследуемого объема после каждого шага. Увеличение же объема одновременно отбракованной части геологического пространства приводит к возрастанию вероятности включения искомого объекта в отбракованный объем. Более конкретно - оптимизация процесса реализации геологических прогнозов предполагает решение двух взаимосвязанных задач: 1) нахождение оптимального способа поэтапного сокращения объема изучаемого геологического пространства, что, в конечном счете, означает поиск путей рациональной стадийности и, соответственно, распределения ресурсов между стадиями геологoразведочных работ; 2) рациональное сочетание методов изучения геологического пространства на различных стадиях, что эквивалентно рациональному комплексированию методов, т.е. оптимальному распределению ресурсов внутри стадий.