Смекни!
smekni.com

Петромагнетизм континентальной литосферы и природа региональных магнитных аномалий (стр. 2 из 12)

Из обобщений [Крутиховская,1986; Петромагнитная модель...,1994] следует, что пояса региональных магнитных аномалий преимущественно располагаются в шовных зонах, разделяющих мегаблоки коры, в зонах тектономагматической активизации; обогащение магнитными минералами относится к этапам растяжения (фемические блоки), обеднение - к этапам сжатия (сиалические блоки). В общем, региональные магнитные аномалии имеют полигенную и полихронную природу, они связаны, в первую очередь, с областями ранней консолидации, сложенными наиболее древними комплексами основных гранулитов, реже с другими метаморфическими породами [Крутиховская,1986; Крутиховская и др.,1984; Петромагнитная модель...,1994; Яковлев, Марковский,1987; Belusso et al.,1990; Liu,1998; Liu and Gao,1992; Liu et al.,1994; Mayhew et al.,1985; Wagner,1984; Wasilewski and Mayhew,1982; Wasilewski and Warner,1988 и др.]. Одни авторы подчеркивают, что амфиболизация ведет к обогащению пород магнетитом [Геншафт и др.,1985; Ермаков, Печерский,1989; Крутиховская,1986; Лутц,1974; Яковлев, Марковский,1987; Williams et al.,1986], другие отмечают обратный эффект - резкое падение намагниченности пород при переходе от гранулитовой к амфиболитовой фации метаморфизма [Афанасьев,1978; Головин, Петров,1984; Пашкевич и др.,1986; Schlinger,1985; Wasilewski and Warner,1988]. Есть примеры, когда кислые породы из разрезов коры оказывались магнитными, а основные породы - немагнитными [Liu and Gao,1996; Pilkington and Percival,1999; Williams et al., 1985]. В ряд по росту намагниченности от немагнитных мантийных гипербазитов и слабомагнитных пироксенитов до магнитных среднекислых гранулитов выстраиваются глубинные породы (ксенолиты) Монголии, Средней Азии [Геншафт, Печерский,1986; Лыков и др.,1981; Петромагнитная модель...,1994; Печерский,1991]. Аномально высокие концентрации магнетита до 10% и более обычны для зон высокой активности, как Малый Кавказ, Камчатка, Иврея [Геншафт, Печерский,1986; Геншафт и др.,1985; Ермаков, Печерский,1989; Лыков, Печерский,1984; Belusso et al.,1990; Wasilewski and Warner,1988 и др.]. Более того, во многих регионах мира встречаются среди ксенолитов высокомагнитные пироксениты "черной серии": породы самых низов коры - верхов мантии, характеризующиеся признаками наложенного метаморфизма и подплавления [Геншафт, Печерский,1986; Геншафт, Салтыковский,1987; Петромагнитная модель...,1994; Салтыковский, Геншафт,1985; Семенова и др.,1984; Mayhew et al.,1985; Wasilewski and Mayhew,1982], но отмеченные аномально высокие намагниченности не являются источниками региональных магнитных аномалий, о чем говорит отсутствие региональных магнитных аномалий в районах Малого Кавказа, Камчатки, Курил и др; на долю ксенолитов магнитных "черных" пироксенитов приходится менее 10% изученных образцов. Такое локальное обогащение магнитными минералами связано с магмами, захватившими ксенолиты.

Благодаря равновесному состоянию многодоменных зерен магнетита, преобладающему в глубинных частях континентальной земной коры, намагниченность глубинных пород определяется, главным образом, концентрацией магнетита и индуктивной намагниченностью независимо от P-T условий вплоть до температур 550-580oС (точки Кюри магнетита) [Завойский, Марковский,1983; Марковский, Таращан,1987]. Однако, во-первых, из-за напряженного состояния в глубинных пород, во-вторых, из-за гетерофазного изменения ильменита и титаномагнетита и, в-третьих, из-за распада пироксенов с появлением магнетита и близких ему минералов возможен определенный вклад в намагниченность глубинных пород однодоменных и псевдооднодоменных магнитных зерен и, соответственно, связи части магнитных аномалий с остаточной намагниченностью, как, например, в случае протерозойских анортозитов Литвы, Украины, Норвегии [Богатиков и др.,1975; McEnroe et al.,1996], гранулитов центральной Австралии [Kelso et al.,1993] и Лабрадора [Kletetschka and Stout,1998] и др. Однако однородность направлений древней естественной остаточной намагниченности невероятна (в случае Q n>1, т.е. преобладания остаточной намагниченности над индуктивной) при мощности магнитоактивных тел 10-20 км и латерального их размера порядка 100 км, медленного и неравномерного их остывания, сложного длительного метаморфизма, тем более на фоне геомагнитного поля меняющейся полярности, соответственно, не реален заметный вклад остаточной намагниченности в региональные магнитные аномалии. К тому же в низах коры, где температура высокая, соотношение остаточной и индуктивной намагниченности смещается в сторону роста вклада последней. С другой стороны, условия в низах континентальной коры благоприятны для образования современной высокотемпературной вязкой остаточной намагниченности [Schlinger,1985; Williams et al.,1986 и др.].

По данным аэромагнитной и спутниковой съемки определена средняя намагниченность нижней коры для центральной Канады - 5 А/м [Hall,1974], северо-западной Германии - 2 А/м [Hahn et al.,1976], Украинского щита - 2-4 А/м [Крутиховская, Пашкевич,1979], США - 3,5

1 А/м [Schnetzler,1985]. Она не противоречит данным непосредственных измерений намагниченности глубинных пород (см. ниже).

Всеми исследователями отмечается существенная роль гранитизации, ведущая чаще к уменьшению намагниченности пород.

За пределами региональных магнитных аномалий на участках регионального метаморфизма высоких ступеней резко уменьшается намагниченность всех типов первичномагматических пород и осадочно-вулканогенных толщ, что прослежено на Балтийском щите [Головин, Петров,1984; Schlinger,1985], в том числе в разрезе Кольской сверхглубокой скважины [Бродская и др.,1992; Кольская...,1984], на Канадском щите [Pilkington and Percival,1999; Williams et al.,1986].

Во всех регионах, где есть региональные магнитные аномалии и где они отсутствуют, породы, относящиеся к верхней мантии, немагнитны.

Таким образом, сопоставление региональных магнитных аномалий с геологической ситуацией и намагниченностью глубинных пород позволяют утверждать, что их источники находятся в пределах земной коры, это главным образом - основные гранулиты. Сказанное не объясняет причин скоплений магнитных минералов в земной коре, для ответа нужна минералогическая и петрологическая информация.

3. Данные экспериментов

Для образования магнитных минералов в среде кристаллизации в первую очередь необходимо присутствие железа, во вторую очередь - титана, магния и других катионов, входящиих в состав наиболее распространенных на Земле магнитных минералов - магнетита, титаномагнетитов, гемоильменитов и пирротина. Из статистики следует, что для образования магнитных минералов необходимо присутствие в породе более 1% Fe [Печерский и др.,1975]. Это условие необходимое, но недостаточное, так известны многочисленные примеры, когда при близком составе пород и сходном содержании железа содержание в них магнитных минералов колеблется от < 0,01% до 5% и более.

Рис. 2

Появление и состав магнитных минералов определяются общим давлением P, температурой T, летучестью кислорода fO2, водородным показателем pH и другими менее существенными параметрами. По данным экспериментов с базальтовыми системами нормальной железистости [Лыков, Печерский,1976, 1977; Рингвуд,1981 и др.], титаномагнетиты кристаллизуются при T<1100oC и P<13 кбар. С ростом давления титаномагнетиты сначала сменяются слабомагнитной Mg-Al-феррошпинелью (рис. 2), затем гранатом. Повышение содержания щелочных элементов в базальтах ведет к более ранней кристаллизации рудных фаз и повышению содержания титана в титаномагнетитах и содержания магния+алюминия в Mg-Al-феррошпинелях [Петромагнитная модель...,1994; Печерский и др.,1975]. Есть примеры экспериментального подтверждения прямого влияния давления на соотношение Fe3+/Fe2+ в расплаве, оно уменьшается с ростом P [Борисов и др.,1991], соответственно повышается содержание титана в кристаллизующемся титаномагнетите [Геншафт, Саттаров, 1981; Osborn et al.,1979].

Внутри P-T-fO2 области выделяются четыре термодинамические зоны условий образования магнитных минералов [Печерский,1985; Печерский и др.,1975]:

  • гематитовая - высоко окислительные условия на поверхности Земли, где образуются минералы, содержащие только Fe3+ (гематит, маггемит, гидроокислы железа, Fe3+ - силикаты);
  • магнетитовая - слабоокислительные условия, где образуются минералы, содержащие Fe2+ и Fe3+ (титаномагнетиты и другие феррошпинели, гемоильмениты);
  • силикатная - относительно восстановительные условия, где практически отсутствует Fe3+, соответственно образуются ильменит, ульвошпинель, герцинит и другие Fe2+ феррошпинели, пирротин, пирит, Fe2+ силикаты;
  • Fe-металлическая - высоковосстановительные условия, помимо минералов "силикатной" зоны, появляется свободное металлическое железо. В литосфере Земли - это экзотические случаи; видимо, "металлическая" зона находится в основании мантии и в ядре Земли, она типична для лунных пород и метеоритов.

Границы между перечисленными зонами примерно соответствуют буферам гематитмагнетит (НМ), кварц-магнетит-фаялит (QMF), железо-фаялит (IF).