Смекни!
smekni.com

Петромагнетизм континентальной литосферы и природа региональных магнитных аномалий (стр. 5 из 12)

Сопоставив перечисленные факты, можно прийти к выводу, что кристаллизующиеся в результате вторичных процессов магнитные минералы замещают уже существующие в породах рудные минералы. При этом первично-магнитные и первично-немагнитные породы остаются таковыми и после вторичных преобразований. На примере Исландии и Малого Кавказа [Геншафт и др.,1985; Лыков и др.,1992; Петромагнитная модель...,1994] показано, что намагниченность изученных пород практически не зависит от содержания в породах амфибола и Js заметно падает с ростом содержания в породах хлорита.

Уменьшение намагниченности пород при их амфиболизации и хлоритизации можно объяснить тем, что эти процессы сопровождаются разъеданием рудных зерен силикатами [Бродская и др.,1992; Кольская...,1984; Olesen et al.,1991; Schlinger and Veblen,1989 и др.]. Появление вторичного магнетита в результате вторичных гидротермальных изменений в ультраосновных породах и алливалитах детально рассмотрено на примере Восточной расслоенной интрузии острова Рам (Шотландия) [Housden et al.,1996]. И перидотиты, и алливалиты немагнитны, их максимальная восприимчивость менее 10-5 ед.СИ, Js<0,3 Ам2 /кг. Магнетит в виде очень мелких зерен, которые фиксируются только по точке Кюри около 575oС, появляется в перидотитах в результате окислительных процессов в интервале температур 500-800oС, его содержание достигает 0,3%. Проникновение флюида и образование магнетита вместе с типично гидротермальными минералами амфиболом, биотитом и др. происходит по трещинкам в результате хрупких деформаций перидотитов. В богатых плагиоклазом алливалитах содержание вторичного магнетита заметно меньше из-за того, что они остаются квазипластичными, т.е. непроницаемыми для флюида. Образование магнетита за счет привноса железа флюидом, а не из оливина, подтверждается отсутствием корреляции между железистостью оливина и количества магнетита в перидотитах.

Таковы закономерности образования и преобразования магнитных минералов в магматических породах, происходящие на верхних этажах земной коры.

5. Магнитопетрологические данные о низах континентальной коры

Магнитопетрологическая информация о глубинных частях континентальной коры и верхней мантии основывается на двух объектах: 1) Массивы докембрийских пород, подвергшихся гранулитовому метаморфизму в условиях низов континентальной коры и пластины которых впоследствии были "выжаты" на поверхность Земли. 2) Ксенолиты глубинных пород, вынесенные на поверхность Земли базальтовыми магмами. В первом объекте есть возможность изучать разрез литосферы непосредственно, наблюдать взаимоотношения пород, пространственное их распределение и т.п., но эти породы подверглись существенным наложенным изменениям при последующем существовании (например, вторичный магнетит и ильменит в гранулитах, по крайней мере, частично образованы при < 500oС, см. раздел 4). Породы второго объекта "избавлены" от вторичных изменений стадии подъема и дальнейшего существования пород, но это случайный набор материала, не привязанный к разрезу литосферы и они доставлены из приочаговой зоны с специфическими процессами кристаллизации и перекристаллизации.

Сказанное относится к объектам исследований. Кроме этого, не менее важен правильный методологический подход. Так, например, следует получать петрохимические и другие характеристики образцов, на которых проводились петромагнитные измерения, что обычно не делается. Петрохимические данные позволяют оценить сохранность баланса вещества, соответствующего магматическому процессу, нередко зависимость магнитных свойств от типа и степени метаморфизма пород лишь кажущаяся, что выявляется именно по сравнению петрохимических и магнитных характеристик (раздел 4), подтвержденных экспериментальными данными (раздел 3). Важны данные о магнитной анизотропии, измерение которой позволяет "привязать" образование магнитных минералов к деформациям (до, во время или после) в процессе метаморфизма, но они используются далеко не всегда.

Далее мы рассмотрим результаты по ряду регионов.

А. Изучение ксенолитов

Афар (Эфиопия).

[Кашинцев, Печерский,1983]. Были изучены многочисленные включения глубинных мантийных и коровых пород (гарцбургиты, лерцолиты, верлиты, пироксениты, габбро и анортозиты) в молодых щелочных базальтах Эфиопии. Подавляющее большинство ксенолитов немагнитны.

Монголия.

[Лыков, Печерский,1984; Лыков и др.,1981]. Изучена большая группа ксенолитов глубинных пород из плиоцен-четвертичных базальтов центральной Монголии. По петрографическим признакам они делятся на две группы: 1) мантийные ультраосновные породы, главным образом, лерцолиты и эклогиты, подавляющее большинство образцов немагнитные, отсутствие магнитных (рудных) минералов подтверждается электронно-микроскопическими и микрозондовыми исследованиями; встречаются редкие зерна вторичной Mg-Al-Fe шпинели с Tc =320-380oС и мелкие зерна вторичного магнетита в трещинках и по краям зерен силикатов; 2) коровые породы - пироксениты, габбро и более кислые разности. При этом основные разности с SiO2 =45-55% немагнитны ( Js<0,2 A м2/кг), более кислые породы магнитные ( Js =0,7-1,5 A м2/кг), что согласуется с кумулятивным трендом и трендом дифференциации (рис. 4, 5, 6, 7). Измеренные точки Кюри коровых пород близки магнетиту, тогда как Tc, рассчитанные по данным микрозондовых измерений средних составов зерен титаномагнетита, варьируют от 190oС до 480oС. Этот факт, а также наличие структур распада в зернах титаномагнетита, говорят, что в магнитных коровых включениях магнетит является продуктом распада первичного титаномагнетита.

Малый Кавказ.

[Геншафт и др.,1985; Лыков, Печерский,1984]. Исследованы включения из плиоцен-четвертичных вулканитов и из третичного Каялу-Коярчинского диоритового интрузива. Везде встречен сходный по минеральному составу набор ксенолитов: габбро, пироксениты, габбро-амфиболиты и амфиболиты. То, что однотипные по составу и минералогии включения встречаются в различных петрохимических типах вмещающих их пород, отсутствие корреляции петрохимических особенностей включений и вмещающих их пород ( r<0,1 ) говорят об их ксеногенной природе и незначительном влиянии выносящей магмы. По мере нарастания процессов изменений от амфиболизации до подплавления идет интенсивное развитие рудного минерала и нарастание намагниченности образцов. Основным рудным минералом является низкотитановый титаномагнетит (TiO 2< 10%), обычно распавшийся, зерна часто корродированы, размер зерен от нескольких мкм до 1 мм; реже встречается ильменит. Не затронутые вторичными изменениями породы слабомагнитны ( Js

0,1 Ам2 /кг; k
10-2 ед.СИ). Более ярко видно нарастание намагниченности с ростом подплавления ( Js до 10 Ам2/кг, k до 16

10-2 ед.СИ). В процессе подплавления обильно кристаллизуется титаномагнетит. Зависимость намагниченности от амфиболитизации слабее и, видимо, имеется максимум в промежуточной области, сильно амфиболитизированные породы без признаков подплавления слабомагнитны. Следов воздействия транспортирующей ксенолиты магмы нет, поэтому можно считать, что указанные вторичные изменения глубинные породы испытали до попадания их в магму. Против связи обогащения вторичными магнитными минералами с вторичными изменениями пород [Геншафт и др.,1985] свидетельствует четкая тенденция к росту намагниченности, т.е. концентрации магнитных минералов, с ростом железистости (Fe0+Fe203 )/(Fe0+Fe203+MgO) ( r =0,81) и степени окисленности железа Fe203/(Fe0+Fe203 ) ( r =0,85). Кроме того, зависимость Js -SiO 2 для ксенолитов Малого Кавказа аналогична левой ветви магматической дифференциации (рис. 4), на диаграмме AFM (рис. 5) и MgO-Fe0+Fe203 (рис. 6) точки ложатся в области первично-магматических трендов: кумулятивного и дифференциации. Отмечается тесная корреляция Fe и Ti (рис. 7), Mg и Ca. Невероятно, чтобы в состав флюида входили Fe и Ti, Mg и Ca в тех же соотношениях, что и в магме [Петромагнитная модель...,1994].