Смекни!
smekni.com

Социально-экономический анализ развития Орловской области (стр. 2 из 6)

1. Постановка цели анализа.

2. Отбор факторов, определяющих исследуемые результативные показатели.

3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.

4. Определение формы зависимости между факторами и результативным показателем.

5. Моделирование взаимосвязей между результативным и факторным показателями.

6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Отбор факторов для анализатого или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки. Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др. Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков. Расчет влияния факторов – главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже. Последний этап факторного анализа – практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации. В зависимости от типа факторной модели различают два основных вида факторного анализа – детерминированный и стохастический. Детерминированный факторный анализпредставляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов. Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении, позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель. Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа.

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

а) наличие совокупности;

б) достаточный объем наблюдений;

в) случайность и независимость наблюдений;

г) однородность;

д) наличие распределения признаков, близкого к нормальному;

е) наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

· качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);

· предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);

· построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);

· оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);

· экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

- прямой и обратный;

- одноступенчатый и многоступенчатый;

- статический и динамичный;

- ретроспективный и перспективный (прогнозный).

При прямом факторном анализеисследование ведется дедуктивным способом – от общего к частному. Обратный факторный анализосуществляет исследование причинно-следственных связей способом логичной индукции – от частных, отдельных факторов к обобщающим. Факторный анализ может быть одноступенчатым и многоступенчатым. Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например,

. При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности. Необходимо также различать статическийидинамическийфакторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике. И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Регрессионный анализ

С позиции регрессионного анализа критериальный показатель

рассматривается как «зависимая» переменная (как правило, ранговая или количественная), которая выражается функцией от «независимых» признаков
. Для оценки эффективности регрессионной диагностической модели вводится вектор остатков
, который отражает влияние на
совокупности неучтенных случайных факторов либо меру достижимой аппроксимации[3] значений критериального показателя
,
, функциями типа
. Линейная функция регрессии записывается следующим образом

,

где

– является свободным членом, а элементы весового вектора
называются коэффициентами регрессии. Различают два подхода в зависимости от происхождения матрицы данных. В первом считается, что признаки
являются детерминированными и случайной величиной является только зависимая переменная z. Эта модель используется наиболее часто и называется моделью с фиксированной матрицей данных. Во втором подходе считается, что признаки
и z – случайные величины, имеющие совместное распределение. В такой ситуации оценка уравнения регрессии есть оценка условного математического ожидания случайной величины z в зависимости от случайных величин
. Данная модель называется моделью со случайной матрицей данных. Каждый из приведенных подходов имеет свои особенности. В то же время показано, что модели с фиксированной матрицей данных и со случайной матрицей данных отличаются только статистическими свойствами оценок параметров уравнения регрессии, тогда как вычислительные аспекты этих моделей совпадают. В уравнении линейной функции регрессии обычно полагают, что величины
независимы и случайно распределены с нулевым средним и дисперсией σ2ε, а оценка параметров w0 и w производится с помощью метода наименьших квадратов (МНК). Ищется минимум суммы квадратов невязок: