Смекни!
smekni.com

Физическая география (стр. 20 из 30)

Такие высоты называются относительными, а проведенные по ним изогипсы — относительными изогипсами. Относительная высота одной изобарической поверхности над другой зависит от средней температуры воздуха между этими двумя поверхностями (рис. 56). Из главы второй известно, что барическая ступень зависит от температуры. Но барическая ступень, т. е. расстояние между двумя уровнями с давлением, различающимся на единицу, в сущности и есть относительная высота одной изобарической поверхности над другой.

В областях тепла толщина атмосферного слоя между двумя поверхностями увеличена, в областях холода — уменьшена.

Чем больше относительная высота, тем выше температура слоя. Следовательно, карты относительной топографии показывают распределение температуры в атмосфере . Иногда говорят, что карты абсолютной и относительной топографии вместе представляют термобарическое поле атмосферы. Составляют карты барической топографии и по осредненным данным за промежутки времени от нескольких дней до месяца. Для климатологических целей применяются карты барической топографии, составленные по многолетним средним данным.

На карты барической топографии, строго говоря, наносят не высоты изобарических поверхностей, а их геопотенциалы. Геопотенциалом (абсолютным) называется потенциальная энергия единицы массы в поле силы тяжести. Иначе говоря, геопотенциал изобарической поверхности в каждой ее точке есть работа, которую нужно затратить против силы тяжести, чтобы поднять единицу массы от уровня моря в данную точку.

Относительный геопотенциал соответственно равен разности абсолютных геопотенциалов двух точек, лежащих на одной вертикали.

Изобары

Карты абсолютной барической топографии для нескольких изобарических поверхностей в своей совокупности наглядно представляют барическое поле атмосферы в тех слоях, в которых располагаются эти изобарические поверхности. Но, кроме того, с давних пор принято изображать барическое поле на уровне моря с помощью линий равного давления — изобар. Для этого наносят на географическую карту величины атмосферного давления, измеренные в один и тот же момент на уровне моря или приведенные к этому уровню, соединяют точки с одинаковым давлением изобарами. Каждая изобара является следом пересечения какой-то изобарической поверхности с уровнем моря.

Изобары можно построить не только для уровня моря, но и для любого вышележащего уровня. Однако в службе погоды составляют для свободной атмосферы не карты изобар, а описанные выше карты барической топографии.

На карте изобар также обнаруживаются уже упоминавшиеся области пониженного и повышенного давления — циклоны и антициклоны. В циклоне самое низкое (минимальное) давление наблюдается в центре; напротив, в антициклоне в центре наблюдается самое высокое давление. На картах изобар для уровня моря, как и на картах барической топографии, обнаруживается постоянное перемещение этих областей и изменение их интенсивности, а следовательно, и постоянные изменения барического поля. В практике службы погоды не применяются отдельные карты изобар. Составляют комплексные синоптические карты, на которые, кроме давления на уровне моря, наносят и другие метеорологические элементы по наземным наблюдениям. На этих картах и проводят изобары.

В климатологии применяются карты изобар для уровня моря, составленные по многолетним средним данным.

Барические системы

Области пониженного и повышенного давления, на которые постоянно расчленяется барическое поле атмосферы, называют барическими системами. Барические системы основных типов — циклон и антициклон — на приземных синоптических картах обрисовываются замкнутыми концентрическими изобарами неправильной, в общем округлой или овальной формы.

При этом в центре циклона давление ниже, чем на периферии, а в центре антициклона давление выше, чем на периферии. Изобарические поверхности в циклоне прогнуты вниз в виде воронок, а в антициклоне выгнуты вверх в виде куполов. Горизонтальные барические градиенты в циклоне направлены от периферии к центру, а в антициклоне — от центра к периферии. Размеры циклонов и антициклонов очень велики; их поперечники измеряются тысячами километров (в так называемых тропических циклонах — сотнями километров).

Кроме описанных барических систем с замкнутыми изобарами, различают еще барические системы с незамкнутыми изобарами. К ним относятся ложбина (пониженного давления) и гребень (повышенного давления).

Ложбина — это полоса пониженного давления между двумя областями повышенного давления. Изобары в ней либо близки к параллельным прямым, либо имеют вид латинской буквы V (в последнем случае ложбина является вытянутой периферийной частью циклона). Изобарические поверхности в ложбине напоминают желоба с ребром, обращенным вниз. Центра в ложбине нет, но есть ось, т. е. линия, на которой давление имеет минимальное значение или (если изобары имеют вид буквы V) на которой изобары резко меняют направление. На каждом уровне ось совпадает с ребром изобарического желоба. Барические градиенты в ложбине направлены от периферии к оси.

Гребень представляет собой полосу повышенного давления между двумя областями пониженного давления. Изобары в гребне либо напоминают параллельные прямые, либо имеют форму латинской буквы U. В последнем случае гребень является периферийной частью антициклона, характеризующейся выпучиванием изобар. Изобарические поверхности в гребне имеют вид желобов, обращенных выпуклостью вверх. Гребень имеет ось, на которой давление максимальное или на которой изобары сравнительно резко меняют направление. Барические градиенты в гребне направлены от оси к периферии.

Различают еще седловину — участок барического поля между двумя циклонами (или ложбинами) и двумя антициклонами (или гребнями), расположенными крест-накрест. Изобарические поверхности в седловине имеют характерную форму седла: они поднимаются в направлении к антициклонам и опускаются в направлении к циклонам. Точка в центре седловины называется точкой седловины.

36. Горизонтальный барический градиент

Рассматривая изобары на синоптической карте, мы замечаем, что в одних местах изобары проходят гуще, в других — реже.

Очевидно, что в первых местах атмосферное давление меняется в горизонтальном направлении сильнее, во-вторых — слабее. Говорят еще: «быстрее» и «медленнее», но не следует смешивать изменения в пространстве, о которых идет речь, с изменениями во времени.

Точно выразить, как меняется атмосферное давление в горизонтальном направлении, можно с помощью так называемого горизонтального барического градиента, или горизонтального градиента давления. В главе четвертой говорилось о горизонтальном градиенте температуры. Подобно этому горизонтальным градиентом давления называют изменение давления на единицу расстояния в горизонтальной плоскости (точнее, на поверхности уровня); при этом расстояние берется по тому направлению, в котором давление убывает всего сильнее. А таким направлением наиболее сильного изменения давления является в каждой точке направление по нормали к изобаре в этой точке.

Таким образом, горизонтальный барический градиент есть вектор, направление которого совпадает с направлением нормали к изобаре в сторону уменьшения давления, а числовое значение равно производной от давления по этому направлению. Обозначим этот вектор символом — Ñр, а числовую его величину -dp/dn, где п — направление нормали к изобаре.

Как всякий вектор, горизонтальный барический градиент можно графически представить стрелкой; в данном случае стрелкой, направленной по нормали к изобаре в сторону убывания давления. При этом длина стрелки должна быть пропорциональна числовой величине градиента.

В разных точках барического поля направление и величина барического градиента будут, конечно, разными. Там, где изобары сгущены, изменение давления на единицу расстояния по нормали к изобаре больше; там, где изобары раздвинуты, оно меньше. Иначе говоря, величина горизонтального барического градиента обратно пропорциональна расстоянию между изобарами.

Если в атмосфере есть горизонтальный барический градиент, это означает, что изобарические поверхности в данном участке атмосферы наклонены к поверхности уровня и, стало быть, пересекаются с нею, образуя изобары. Изобарические поверхности наклонены всегда в направлении градиента, т. е. туда, куда давление убывает.

Горизонтальный барический градиент является горизонтальной составляющей полного барического градиента. Последний представляется пространственным вектором, который в каждой точке изобарической поверхности направлен по нормали к этой поверхности в сторону поверхности с меньшим значением давления. Числовая величина этого вектора равна dp/dn; но здесь n — направление нормали к изобарической поверхности. Полный барический градиент можно разложить на вертикальную и горизонтальную составляющие, или на вертикальный и горизонтальный градиенты. Можно разложить его и на три составляющие по осям прямоугольных координат X, Y, Z. Давление меняется с высотой гораздо сильнее, чем в горизонтальном направлении. Поэтому вертикальный барический градиент в десятки тысяч раз больше горизонтального. Он уравновешивается или почти уравновешивается направленной противоположно ему силой тяжести, как это вытекает из основного уравнения статики атмосферы. На горизонтальное движение воздуха вертикальный барический градиент не влияет. Дальше в этой главе мы будем говорить только о горизонтальном барическом градиенте, называя его просто барическим градиентом.