Зокрема одне з кращих визначень запропоновано щ е у 1984 році Європейською економічною комісією ООН з маловідходних технологій.
При вирішенні проблеми безвідходності виробництва слід мати на увазі дві сторони єдиного процесу. Перше – це найбільш раціональних видобуток та повне використання ресурсів і як наслідок зменшення утворення відходів. Друге – це розширення використання відходів, що утворюються. Ці шляхи не виключають, а взаємно доповнюють один одного.
При цьому мається на увазі можливість створення технологічних систем, вплив яких на природу не буде перевищувати її відновлювального потенціалу.
В основі концепції безвідходних технологій лягли три основні положення, а саме:
· створення максимально замкнених систем, організованих за аналогією з природними екосистемами;
· раціональне використання всіх компонентів сировини;
· неминучі впливи на навколишнє середовище не повинні порушувати його функціонування.
Безвідходне виробництво передбачає встановлення повного контролю над рухом матеріальних ресурсів на всіх стадіях: видобутку сировини, її виробничої переробки, споживання, утилізації відходів виробництва і споживання. Безвідходні технології стають ефективними навіть у тих випадках, коли собівартість одержаної продукції стає більш високою. Проте необхідно, щоб перевитрати виробництва були меншими, ніж економія на зменшенні збитків від забруднення навколишнього середовища.
Комплексне використання сировини. Комплексне використання – це найбільш повне, економічно доцільне використання всіх корисних компонентів, що містяться в сировині, а також використання залишкових продуктів (в будівництві тощо). Майже всі види сировини мінерального і органічного походження містять ряд супутніх компонентів.
Нафта, вугілля, залізні і марганцеві руди, титанові, ртутні, калійні, нікелеві, уранові руди, первинні каоліни у своєму складі у відносно підвищених концентраціях цінні компоненти, а саме:
· нафта містить у своєму складі деякі кольорові метали, перш за все ванадій і нікель;
· вугілля Донбасу характеризується високим вмістом германію, ртуті, молібдену, миш”яку, меншою мірою рідкісноземельних металів, літію, рубідію, цезію та деяких інших;
· залізні руди містять германій, скандій, ванадій, золото, срібло, а також вісмут, стронцій, нікель, титан, уран;
· ртутні руди – сурму, золото, срібло;
· марганцеві руди – ітрій, рубідій, стронцій, свинець, цинк;
· каоліни – рідкісноземельні елементи.
Повнота вилучення цінних компонентів залежить від суспільної потреби в них та рівня розвитку техніки і технології, що дозволяють економічно виправданим шляхом їх отримувати.
У гірничодобувній та переробній промисловості повна і комплексна розробка родовищ та використання сировини передбачає підвищення коефіцієнту вилучення запасів корисних копалин із надр, використання розкривних і супутніх порід, продуктів збагачення, застосування більш глибинних методів переробки з метою більшого виходу готового продукту (концентрату) та вилучення всіх супутніх компонентів.
В лісовій і деревообробній промисловості комплексне використання сировини передбачає максимальний вихід продукції з кожного куб. м деревини, використання таких продуктів лісозаготівлі і деревообробки, як зменшення відходів на всіх стадіях технологічних процесів.
Комплексне використання сировини передбачає поряд з наявністю відповідної техніки і технології повну інформацію про кількість і якість природних ресурсів, матеріалів (первинних і вторинних), їх вартісну оцінку та вартість продукції, що може бути з ним отримана.
Замкнені водооборотні системи. Одним з напрямів безвідходного виробництва є створення водооборотних систем, в основі функціонуванні яких лежить багаторазове використання води, після чого чисті води повертаються у водойми. Методи очищення води повинні забезпечувати одночасне вилучення та утилізацію цінних компонентів. Що більша кратність використання води, то досконаліша система водопостачання. (Таблиця №6 “Обсяг оборотної та послідовно (повторно) використаної води за регіонами») [1 с.35]
На окремих підприємствах Японії та США кратність використання водних ресурсів становить 22-27 разів.
У гірничо видобувній промисловості ресурсозберігаючий ефект дає впровадження малоопераційних технологічних систем (гідровидобування вугілля чи метод підземної виплавки сірки), а також впровадження технології комплексної переробки сировини.
При видобуванні металевої сировини найбільш ефективних напрямами (з урахуванням подальших переділів) є підвищення глибини збагачення сирої руди та підвищення вмісту цільового компоненту в товарній руді.
У металургійній промисловості найбільш перспективними є технології прямого відновлення заліза (минаючи доменний процес), засновані на використанні залізорудних металізованих обкатанців, природного газу і твердого палива; розширення використання киснево-конверторної виплавки та електроплавки (з безперервним литтям заготовок); підвищення частки металобрухту в шихті; подальший розвиток спеціальних методів виплавки сталі з підвищеними експлуатаційними характеристиками.
У прокатному виробництві - це технологічні процеси, що об”єднають операції прокату і безперервної розливки, застосування термообробки, нанесення захисних покриттів та ін.
У машинобудуванні та металообробці – застосування технологій пластичної деформації, сучасних методів оброблення металів.
У промисловості будівельних матеріалів – удосконалення технологій виробництва цементу, скла, цегли, залізобетону на базі широкого використання таких альтернативних джерел сировини, як золошлаки теплоелектростанцій, шлами вуглезбагачення, шлаки і шлами металургійної промисловості. (Таблиця №4 «Використання вторинної серовини») [1 с.33]
3.2 Розроблення і освоєння принципово нових технологій і вдосконалення існуючих
Сучасний етап розвитку науково-технологічного прогресу характеризується все більш активним впливом фундаментальних досліджень на технологію виробництва. Це призводить до корінного якісного перетворення продуктивних сил, зміни матеріально-технічної бази суспільного виробництва, його змісту і форми. Принципово нові сучасні технології (ядерна, електронна, лазерна та ін.) виникли на базі фундаментальних наукових відкриттів і відрізняються використанням матеріалів і принципів їх оброблення, що не зустрічаються і природі. Трансформація наукових знань в технології стає одним із вирішальних факторів суспільного розвитку.
Використання нових технологічних рішень і удосконалення існуючих технологій сприяє оптимальному використанню ресурсів, підвищує їх віддачу, зменшує витрати ресурсів та утворення відходів, забезпечує більш раціональне їх використання в галузях економіки.
Для підвищення ефективності згорання вугілля і зменшення забруднення середовища останнім часом розроблено нові технології, наприклад котли з топками з киплячим поверхневим шаром і різні типи фільтрів. Але повне вилучення корисних копалин і повне використання енергопотенціалу, а також мінімізація забруднення довкілля вимагають радикальної перебудови технології видобутку вугілля і його збагачення. Науково-технологічний прогрес відкриває шлях до цього – через попереднє перетворення вугілля в газ і вилучення під час газифікації шкідливих для навколишнього середовища (проте цінних для промисловості) компонентів.
Процес газифікації було освоєно промислово ще в першій половині минулого століття (він забезпечував потреби у синтез-бензині Німеччини і Південно-Африканської Республіки). Нині роботи з дослідження і практичного використання газифікації вугілля знову набули широкого розмаху. У США, Великобританії та Німеччині доля вугілля, яке газифікується, сягає уже перших десятків відсотків. Існують фабрики, де металургійний процес супроводжується використанням газифікованого вугілля та ін.
Нові можливості відкривають технології газифікації вугілля у відновному середовища, що дозволяють здійснювати його повну переробку. Водночас із газифікацією в таких установах відбувається відновлення оксидів металів, металізація залізнорудних обкатанців. Тому зникає потреба в доменній печі. Для відновлення руди не потрібен і кокс – достатньо і високозольного вугілля. В умовах енергетичної кризи вигода використання в металургійному процесі високо зольного вугілля й ліквідація доменного і коксохімічного виробництва в чорній металургії є особливо очевидною. Будівельна промисловість на основі залишкових речовин буде забезпечуватись без цементними будівельними матеріалами.
3.3 Вторинне ресурсокористування
Науково-технологічний прогрес значною мірою реалізується у всі більш динамічному розвитку вторинного ресурсокористування. В сучасному світі чим більш розвинутою є країна, тим вищою є в ній частка вторинних джерел в загальному ресурсоспоживанні.
Аналіз світового досвіду комплексної переробки сировини, рекуперації відходів свідчить про закономірність ресурсозберігаючих тенденцій інтенсивного природокористування. Їх науковою основою є ідеї технологічно замкнутого кругообороту використання природної сировини і становлення на цій основі безвідходних територіально-виробничих комплексів. (Таблиця №4 «Використання вторинної сировини ») [1 с.33]
В розвинутих країнах світу, зокрема в США, із вторинної сировини отримують понад 20% всього виробництва алюмінію, 33% заліза, 50% свинцю і цинку, 44% міді тощо. Маються на увазі насамперед ресурси у вигляді лому цих металів. Але рециклінг стосується і гуми, і пластмас, і мастильних матеріалів, і багатьох інших.
Певного досвіду використання вторинних ресурсів набуто і в Україні. Введення в 1981 році загальнодержавного планування використання вторинних ресурсів сприяло збільшенню обсягів залучення їх до виробництва. За розрахунками вторинне ресурсокористування – зі складу відходів – в кінці 80-х років складало 11-12% загального ресурсокористування. Однак на протязі 90-х років спостерігалась тенденція до спаду обсягів їх використання, які зменшилися в 3 рази. Посилення державного регулювання наприкінці 90-х років сприяло зміні негативних тенденцій щодо використання відходів. Починаючи з 2000 року стали збільшуватись і відносні і абсолютні показники використання відходів як вторинної сировини, що свідчить про тенденцію до ресурсозбереження в національній економіці. [5, с.235]