Не до конца ясен механизм формирования залежей, обогащенных сероводородом. Часть исследователей считает, что сероводород в залежи поступает из пластовых вод. Однако сероводород имеет высокую растворимость. Трудно допустить, что водонапорные системы когда-либо достигали предельного насыщении по сероводороду. Очевидно, в большей степени правы те исследователи, которые обогащение залежей сероводородом объясняют окислением УВ сформировавшихся залежей, откуда впоследствии сероводород мигрировал в контурные воды.
Вопросы формирования залежей нефти в результате ее выделения из пластовых вод менее разработаны. Вероятно, для нефти и жирных газов основной механизм эмиграции — газовые растворы и истинные водные растворы в модифицированной воде. Однако эти растворы, попадая в коллектор, тут же распадаются, и далее нефть (и конденсат) по коллектору мигрирует струйно. Возможно, важную роль в формировании залежей играет нефть, находящаяся в тонкодисперсном состоянии. С этих позиций определенный интерес представляет оценка дальности миграции жидких УВ при формировании залежей. Исследования показывают, что величины запасов нефтяных месторождений хороню согласуются с объемами материнских пород в зонах, оконтуренных по мульдам впадин. Расстояния от мелких месторождений до наиболее удаленных участков, откуда могла мигрировать нефть в залежь, достигают 20 — 25 км: для крупных месторождений эти расстояния составляют обычно 50 —70 км, редко 140 —150 км.
Анализ имеющихся материалов указывает на сопряженность эмиграции, миграции и условий формирования залежей нефти и газа. Это находит подтверждение и в закономерностях изменения химического состава газов в ряду: газы рассеянного ОВ ® газы подземных вод ® газы нефтегазовых скоплений. Сорбированные газы ОВ нефтематеринских пород состоят из метана и его гомологов, причем доля гомологов в источнике миграции может составлять более 50%. Отмечается высокая концентрация углекислоты. Для газоматерикскик пород (арконовый тип ОВ) состав сорбированных газов преимущественно метановый, но и в этом случае содержание гомологов метана значительно. Такую дифференциацию газов между материнской толщей и коллектором обеспечивает диффузия вследствие разной диффузионной проницаемости пород для метана и его гомологов. Существенно отличаются газы нефтематеринских толщ и от газов газовых залежей. Однако последние идентичны водорастворённым газам, что указывает на их формирование в результате дегазации вод.
Газы нефтяных и газоконденсатных месторождений значительно отличаются от газов вмещающих водонапорных систем. Вместе с тем нефтяные газы близки по составу газам нефтематеринских пород. Это указывает на ведущую роль газовых растворов (струйная миграция) в их формировании, так как с газовыми растворами из нефтематеринских толщ эмигрируют как жирные газы, так и жидкая нефть. При небольшой роли газовых растворен и формировании залежей УВ состав газов контурных вод незначительно отличается от газов залежей. И эти различии тем значительнее, чем большую роль в формировании залежей играла струйная эмиграция месторождения. По-видимому, большая часть нефтяных залежей сформирована в результате струйного выноса нефти (газовые растворы) из нефтегазогенерирующих толщ или в виде растворов модифицированной воды.
ГИДРОГЕОЛОГИЧЕСКИЕ КРИТЕРИИ ОЦЕНКИ ПЕРСПЕКТИВ НЕФТЕГАЗОНОСНОСТИ
И предыдущих разделах была показана исключительно важная роль подземных вод на всех этапах образования нефти и газа, их миграции, формировании и сохранения их залежей, что определяет возможность использования гидрогеологических критериев при прогнозировании нефтегазоносности недр. Гидрогеологические нефтегазопоискоаые показатели весьма разнообразны, и особенности их использования на разных этапах геологоразведочного процесса могут существенно различаться. Поэтому изучение гидрогеологических критериев следует начинать с классификации и выяснения оптимальных (наиболее благоприятных) их комплексов, методики использования показателей при поисках месторождений нефти и газа.
В настоящее время существует большое число разнообразных схем классификаций гидрогеологических показателей. Наиболее полные сводки исследований, посвященных вопросам изучения гидрогеологических показателен нефтегазоносности. Разработка классификационных схем гидрогеологических показателей оценки перспектив нефтегазоносности идет по трем направлениям: первое ¾ все показатели разделяют на прямые и косвенные, при этом принимают, что прямые однозначно указывают па наличие залежей нефти и газа, а косвенные характеризуют благоприятные условия для сохранения этих залежей; второе — показатели группируют по классам изучаемых информационных объектов, например, различают показатели общегидрогеологические, палеогидрогеологические, гидрохимические, газовые, геотермические и др.; третье — предусматривают выделение специфических показателей для определения наличия нефти и газа, условий формирования, сохранения залежей, условий наличия ловушек и др.
Большинство исследователей справедливо считает, что для всех гидрогеологических бассейнов не существует универсальных гидрогеологических показателей. Бассейны, различаясь по особенностям геологического строения, характеризуются и своим набором гидрогеологических показателей. Результаты многолетних исследований в различных бассейнах и анализ существующих классификаций позволяют определить следующую совокупность гидрогеологических показателей оценки перспектив нефтегазоносности: общегидрогеологические и палеогидрогеологические, гидродинамические, гидрохимические (сюда включаются ВРОВ и газы), геотермические и микробиологические.
Обычно при оценке перспектив нефтегазоносности по гидрогеологическим данным различают региональную, зональную и локальную оценки перспектив нефтегазоносности недр. В процессе региональной оценки рассматриваются гидрогеологические условия нефтегазоносных бассейнов или их частей, а при зональной — отдельных территорий или зон внутри бассейна. Главная задача гидрогеологических исследований при локальной оценке нефтегазоноспости заключается в получении информации, которая прямо или косвенно указывала бы па наличие или отсутствие залежей нефти и газа в пределах рекомендуемой для разбуривания локальной площади (объекта).
До сих пор при прогнозировании не всегда используют всю совокупность гидрогеологических показателей, что приводит к снижению эффективности их использования в нефтегазопоисковой практике. Кроме того, степень применимости тех или иных показателей в различных гидрогеохимических обстановках и районах различна. Даже в пределах одного бассейна, но в разных гидрогеохимических обстановках информативность одних и тех же гидрогеохимическигс показателей различна. В связи с этим и методика оценки перспектив нефтегазоносности по результатам глубинного гидрогеологического опробования водоносных горизонтов в конкретных гидрогеохимических обстановках имеет свои особенности. Поэтому региональная, зональная и локальная оценка перспектив нефтегазоносности должна по возможности осуществляться комплексно с использованием всех имеющихся показателей.
Общие гидрогеологические показатели
В группу общегидрогеологических показателей обычно включают следующие характеристики: тип бассейна (или его части), его размеры и объем осадочных пород; особенности водоносных комплексов, их выдержанность и коллекторские свойства; надежность региональных водоупоров; характер распределения по площади и разрезу гидрохимических, газовых и температурных параметров; положение региона или локального участка в пределах бассейна и др.
Перспективы нефтегазоносности бассейнов возрастают с увеличением площади бассейна и объема слагающих бассейн осадочных толщ. Необходимое условие нефтеносности бассейна ¾ достаточная глубина (более 1—2 км) погружения осадочных пород. В зависимости от типа ОВ и возраста пород, температурных условий эта глубина может варьировать. Минимальная граница погружения пород для образования промышленных газовых месторождений снижается — в среднем 300 — 800 м и даже меньше. Гидрогеологические бассейны небольших размеров (1—5 тыс. км2 и менее), если даже они и заполнены мощной осадочной толщей, характеризуются меньшими перспективами нефтегазоносности, так как в них обычно недостаточна по размерам «нефтегазосборная площадь» и облегчены условия для разрушения УВ инфильтрационными водами.
Важным критерием нефтегазоносности бассейнов или их частей является присутствие водоупоров. Длительная сохранность нефтегазовых залежей обеспечивается наличием региональных водоупоров значительной мощности. Такими водоупорами служат мощные толщи соленосных, гипсоангидритовых, глинистых, глинисто-карбонатных и других изолирующих пород.
Анализ особенностей распределения гидрохимических, газовых и температурных параметров подземных вод позволяет в ряде случаев наметить в разрезе и по площади осадочных бассейнов зоны, благоприятные для сохранения залежей нефти и газа. Например, в направлении возрастания минерализации и содержания микрокомпонентов (брома, йода, бора, алюминия и др.), увеличения общей газонасыщенности вод, упругости газов, степени прогретости недр и т. д. нарастают перспективы нефтегазоносности. Характер распределения гидрогеологических показателей по площади развития водоносных комплексов позволяет проследить, насколько далеко от обрамления бассейнов распространяются области, промытые инфильтрационными водами, с неблагоприятными условиями для сохранности залежей нефти и газа. Здесь рассмотрены только главные общие гидрогеологические показатели перспектив нефтегазоносности, на самом деле их перечень этим не исчерпывается.